功能梯度点阵夹层结构抗爆性能数值仿真研究

王同银,刘杨,李刚,陆晓峰,朱晓磊

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 34-39.

PDF(1188 KB)
PDF(1188 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 34-39.
论文

功能梯度点阵夹层结构抗爆性能数值仿真研究

  • 王同银,刘杨,李刚,陆晓峰,朱晓磊
作者信息 +

Numerical simulation for anti-explosion performance of functionally graded lattice sandwich panels

  • WANG Tong-yin, LIU Yang, LI Gang, LU Xiao-feng, ZHU Xiao-lei
Author information +
文章历史 +

摘要

为进一步提高点阵夹层结构的抗爆性能,提出了面板上薄下厚,芯层上细下粗(正向梯度化)的功能梯度点阵夹层结构,利用ANSYS/LS-DYNA有限元软件对新结构的抗爆性能进行了数值模拟研究。分别探讨了面板梯度化、芯子梯度化对结构抗爆性能的影响,并对功能梯度点阵夹层结构的各尺寸参数做单因素分析。结果表明,同时考虑面板和芯子的正向梯度化能大幅度提高点阵夹层结构吸能,面板正向梯度化对吸能的贡献比例高于芯子梯度化。此外,由单因素分析可知,上下面板厚度、芯层厚度以及芯杆与下面板之间的夹角对抗爆性能影响很大,芯杆上下截面边长对抗爆性能的影响相对较小。

Abstract

To improve lattice sandwich panels’ anti-explosion performance, a functionally graded lattice sandwich panel structure was proposed, its upper facesheet was thinner than lower one, its upper core layer was fine and lower one was coarse (namely positive gradient distribution). The FE software ANSYS/LS-DYNA was used to study the anti-explosion performance of the new sandwich structure. Effects of facesheet gradient and core layer one on the anti-blast performance of sandwich panels were investigated, respectively. Single factor analyses were performed for size parameters of functionally graded lattice sandwich structures. The results indicated that energy absorption of lattice sandwich panels can be greatly improved by simultaneously considering positive gradient distribution of facesheet and core layer; the contribution of facesheet positive gradient distribution to energy absorption is more significant than that of core layer positive gradient distribution; moreover, the thicknesses of upper panel, lower one and core layer, and the angle between core bar and lower facesheet have a larger effect on the new structure’s anti-blast performance, while the effect of sizes of core bar’s top and bottom sections is smaller.

关键词

功能梯度 / 点阵夹层 / 抗爆性能 / 数值模拟

Key words

 functionally graded / lattice sandwich / explosion resistance / numerical simulation

引用本文

导出引用
王同银,刘杨,李刚,陆晓峰,朱晓磊. 功能梯度点阵夹层结构抗爆性能数值仿真研究[J]. 振动与冲击, 2018, 37(3): 34-39
WANG Tong-yin, LIU Yang, LI Gang, LU Xiao-feng, ZHU Xiao-lei. Numerical simulation for anti-explosion performance of functionally graded lattice sandwich panels[J]. Journal of Vibration and Shock, 2018, 37(3): 34-39

参考文献

[1] 马涛,赵忠民,刘良祥,等. 功能梯度材料的研究进展及应用前景[J]. 化工科技,2012,20(01): 71-75.
MA Tao, ZHAO Zhong-min, LIU Liang-xiang, et al. The research development and future application of functionally gradient materials [J]. Science & Technology in Chemical Industry, 2012, 20(01): 71-75.
[2] Zhou J, Guan Z W, Cantwell W J. The impact response of graded foam sandwich structures [J]. Composite Structures, 2013, 97: 370-377.
[3] Woodward B, Kashtalyan M. 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings [J]. International Journal of Mechanical Sciences, 2011, 53(10): 872-885.
[4] Liu X R, Tian X G, Lu T J, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading [J]. International Journal of Mechanical Sciences, 2014, 84: 61-72.
[5] 韩宾,于渤,秦科科,等. 低速冲击载荷下金属点阵夹芯板的动态响应分析[J]. 应用力学学报,2014,31(5): 782-788.
HAN Bin, YU Bo, QIN Ke-ke, et al. Dynamic responses of metallic lattice sandwich plates subjected to low-velocity impact [J]. Chinese Journal of Applied Mechanics, 2014, 31(5): 782-788.
[6] 郭锐,南博华,周昊,等. 点阵金属夹层结构抗侵彻实验研究[J]. 振动与冲击,2016,35(24): 45-50.
GUO Rui, NAN Bo-hua, ZHOU Hao, et al. Experiment assessment of the ballistic response of a hybrid-cored sandwich structure [J]. Journal of Vibration and Shock, 2016, 35(24): 45-50.
[7] Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material [J]. International Journal of Solids & Structures, 2001, 38:7181-7196.
[8] Dharmasena K P, Wadley H N G, Williams K, et al. Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air [J]. International Journal of Impact Engineering, 2011, 38(5): 275-289.
[9] Zhang P, Cheng Y S, Liu J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225-246.
[10] 亓昌,杨丽君,杨姝. 梯度铝泡沫夹层结构抗爆性能仿真与优化[J]. 振动与冲击,2013,32(13): 70-75.
QI Chang, YANG Li-jun, YANG Shu. Simulation and optimization for blast-resistant performances of a graded aluminum foam sandwich structure [J]. Journal of Vibration and Shock, 2013, 32(13): 70-75.
[11] 韩守红,吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化[J]. 兵工学报,2010,31(11): 1468-1474.
HAN Shou-hong, LV Zhen-hua. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 31(11): 1468-1474.
[12] 乔迟. 空中爆炸载荷下箱型梁防护结构研究[D]. 上海:上海交通大学,2015.
QIAO Chi. Study on box girder protective structure under external blast load [D]. Shanghai: Shanghai Jiao Tong University, 2015.
[13] 刘珍. 内爆炸载荷下双层钢管结构的力学行为研究[D]. 太原:太原理工大学,2016.
LIU Zhen. The dynamic mechanical behavior of double-layer steel tube under internal blast-load [D]. Taiyuan: Taiyuan University of Technology, 2016.

PDF(1188 KB)

Accesses

Citation

Detail

段落导航
相关文章

/