气体端面密封在实际运行中,静环对动环轴向窜动和角向摆动的跟踪响应能力(追随性)至关重要,优良的追随性能够降低外界干扰对密封稳定性造成的影响。将气体端面密封简化为弹簧-阻尼-质量系统,基于线性化的摄动法求解了密封气膜动态性刚度和阻尼系数,在此基础上研究了弹簧和补偿环用辅助密封圈刚度和阻尼对气体端面密封追随性的影响规律,研究对象包括动压式密封、静压式密封以及动静压混合式密封三种密封形式。研究结果表明:当刚度和阻尼分别小于某数量级时,三种密封在轴向和角向均能具有优异的追随性,随着刚度和阻尼的增加,密封追随性随之变差;同等条件下,动压式密封追随性最好,动静压混合式密封次之,静压式密封最差。
Abstract
In actual operation of a gas face seal, its stator ring’s ability to track its rotating seal ring’s axial endplay and angle swing (i. e. , its tracking property) is crucial, its excellent tracking property can reduce the influence of external disturbances on the seal stability. Here, a gas face seal assembly was simplified into a spring-damper-mass system. Using the perturbation method based on the linearization, the gas film dynamic stiffness and damping coefficients were solved. Then, the effect laws of stiffness and damping of spring and secondary seal on the tracking property of gas face seal were investigated. Gas face seals had three different end face structures including dynamic pressure one, hydrostatic pressure one and dynamic-hydrostatic pressure hybrid one. Results showed that the three types of seal possess perfect axial and angular tracking properties when stiffness and damping are less than a certain order of magnitude; with increase in stiffness and damping, the tracking property of gas face seal becomes poorer; under the same conditions, the dynamic pressure gas face seal has the best tracking property, followed by the dynamic-hydrostatic pressure hybrid one, and the last is the hydrostatic pressure one.
关键词
气体端面密封 /
追随性 /
稳定性 /
弹簧 /
辅助密封圈
{{custom_keyword}} /
Key words
gas face seals /
tracking property /
stability /
spring /
secondary seal
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张树强, 李双喜, 蔡纪宁, 等. 动静压混合式气体密封追随性及主动调控振动特性数值分析. 航空学报, 2012, 33(7): 1336-1346.
Zhang Shuqiang, Li Shuangxi, Cai Jining, et al. Numerical analysis for the tracking property and active regulation vibration characteristics of dynamic-hydrostatic hybrid gas seals, Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1336-1346.
[2] 宋鹏云, 胡晓鹏, 许恒杰. 实际气体对T槽干气密封动态特性的影响. 化工学报, 2014, 65(4): 1344-1352.
Song Pengyun, Hu Xiaopeng, Xu Hengjie. Effect of real gas on dynamic performance of T-groove dry gas seal, CIESC Journal, 2014, 65(4): 1344-1352.
[3] 刘向锋, 徐辰, 黄伟峰. 基于半解析法的极端工况干气密封动态特性研究与参数设计. 清华大学学报(自然科学版), 2014, 54(2): 223-228,234.
Liu Xiangfeng, Xu Chen, Huang Weifeng. Analysis and parametric design of the dynamics of a dry gas seal for extreme operating conditions using a semi-analytical method, J Tsinghua Univ (Sci & Technol), 2014, 54(2): 223-228,234.
[4] 丁雪兴, 陆俊杰, 刘勇, 等. 热耗散变形下干气密封系统轴向振动稳定性分析. 振动工程学报, 2016, 29(1): 79-86.
Ding Xuexing, Lu Junjie, Liu Yong, et al. Stability analysis on axial vibration of dry gas seal system under the thermo-elastic deformation considering the thermal dissipation. Journal of Vibration Engineering, 2016, 29(1): 79-86.
[5] Green I, Barnsby R M. A simultaneous numerical solution for the lubrication and dynamic stability of noncontacting gas face seals. Journal of Tribology, 2001, 123(2): 388-394.
[6] Miller B A, Green I. Numerical formulation for the dynamic analysis of spiral-grooved gas face seals. Journal of Tribology, 2001, 123(2): 395-403.
[7] Miller B A, Green I. Semi-analytical dynamic analysis of spiral-grooved mechanical gas face seals. Journal of Tribology, 2003, 125(2): 403-413.
[8] Ruan B. A Semi-analytical solution to the dynamic tracking of non-contacting gas face seals. Journal of Tribology, 2002, 124(1): 196-202.
[9] Blasiak S, Zahorulko A V. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces. Tribology International, 2016, 94: 126-137.
[10] Ruan B. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals. Journal of Tribology, 2002, 124(1): 186-195.
[11] Green I, Barnsby R M. A parametric analysis of the transient forced response of noncontacting gas coned face seals. Journal of Tribology, 2002, 124(2): 151-157.
[12] Zirkelback N, Andres L S. Effect of frequency excitation on force coefficients of spiral groove gas seals. Journal of Tribology, 1999, 121(4): 853-863.
[13] Elrod H G, Jr. McCabe J T, Chu T Y. Determination of gas-bearing stability by response to a step-jump. Journal of Lubrication Technology, 1967, 89: 493-498.
[14] Miller B A, Green I. Numerical techniques for computing rotor-dynamic properties of mechanical gas face seals. Journal of Tribology, 2002, 124(4): 755-761.
[15] 刘暾, 刘育华, 陈世杰. 静压气体润滑. 哈尔滨: 哈尔滨工业大学出版社, 1990: 122-126.
Liu Tun, Liu Yuhua, Chen Shijie. Hydrostatic gas lubrication. Harbin: Harbin Institute of Technology Press, 1990: 122-126.
[16] 刘雨川, 徐万孚, 陈国林, 等. 端面气膜密封的高性能端面结构. 航空学报, 2000, 21(2): 187-190.
Liu Yuchuan, Xu Wanfu, Chen Guoling, et al. Face configuration with high performance for gas film face seal. Acta Aeronautica et Astronautica Sinica, 2000, 21(2): 187-190.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}