基于LQG的混合电磁悬架阻尼-刚度设计及试验研究

汪若尘1,钱禹辰1,丁仁凯1,孟祥鹏1,谢健1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 61-65.

PDF(1558 KB)
PDF(1558 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 61-65.
论文

基于LQG的混合电磁悬架阻尼-刚度设计及试验研究

  • 汪若尘1,钱禹辰1,丁仁凯1,孟祥鹏1,谢健1
作者信息 +

Design and tests for damping-stiffness of a hybrid electromagnetic suspension based on LQG#br#

  • WANG Ruochen1  QIAN Yuchen1  DING Renkai1  MENG Xiangpeng1   XIE Jian1
Author information +
文章历史 +

摘要

本文提出了一种具有三种模式的混合电磁悬架,三种模式分别侧重于悬架的平顺性、轮胎接地性和综合性能,协调了悬架平顺性与轮胎接地性之间的矛盾。建立了混合电磁悬架的动力学模型,确定了各个模式下LQG控制策略的加权系数。在不同的模式下分析了刚度、阻尼对于悬架动力学性能以及悬架能耗特性的影响,确定了不同模式下刚度和阻尼的取值,并进行了仿真分析,结果表明:混合电磁悬架相比于传统被动悬架能够有效改善悬架动力学性能,且相比于主动悬架能明显减少能量消耗。最后进行了试验研究,试验结果与仿真结果基本一致,验证了仿真结果的正确性,表明混合电磁悬架能够减少悬架主动控制时的能量消耗。

Abstract

A hybrid electromagnetic suspension with three modes was proposed here. Three modes focused on ride comfort, tire grounding ability and comprehensive performance of a suspension, respectively. The contradiction between ride comfort and tire grounding ability was coordinated. The dynamic model of the hybrid electromagnetic suspension was established. Weight coefficients of LQG control strategy under the three modes were determined. The effects of the suspension’s stiffness and damping on its dynamic performance and energy consumption characteristic were analyzed under different modes, the suspension’s stiffness and damping values under different modes were determined. Simulation analysis was performed. The results showed that compared with a traditional passive suspension, the hybrid electromagnetic suspension can improve a suspension’s dynamic performance effectively; it can significantly reduce a suspension’s energy consumption compared with an active suspension. Finally, the tests were conducted. It was shown that the test results agree well with those of simulation, the correctness of the simulation results is verified.

关键词

混合电磁悬架 / LQG控制 / 刚度 / 阻尼

Key words

hybrid electromagnetic suspension / LQG control / stiffness / damping

引用本文

导出引用
汪若尘1,钱禹辰1,丁仁凯1,孟祥鹏1,谢健1. 基于LQG的混合电磁悬架阻尼-刚度设计及试验研究[J]. 振动与冲击, 2018, 37(3): 61-65
WANG Ruochen1 QIAN Yuchen1 DING Renkai1 MENG Xiangpeng1 XIE Jian1. Design and tests for damping-stiffness of a hybrid electromagnetic suspension based on LQG#br#[J]. Journal of Vibration and Shock, 2018, 37(3): 61-65

参考文献

[1]兰波,喻凡,刘娇蛟. 主动悬架LQG控制器设计[J]. 系统仿真学报,2003,01:138-140+153.
LAN Bo, YU Fan, LIU Jiaojiao. The Design of LQG Controller of Active Suspension[J]. Journalof System Simulation, 2003,01:138-140+153.
[2]曹民,刘为,喻凡. 车辆主动悬架用电机作动器的研制[J]. 机械工程学报,2008,11:224-228.
CAO Min, LIU Wei, YU Fan. DevelopmentonElectromotorActuator for Active SuspensionofVehicle[J]. Chinese Journal of Mechanical Engineering, 2008,11:224-228.
[3]WANG J, WANG W, ATALLAH K. A linear permanent-magnet motor for active vehicle suspension[J]. Vehicular Technology, IEEE Transactions on, 2011, 60(1): 55-63.
[4]唐诗晨,陈龙,汪若尘,等. 基于阻尼多模式切换的主动悬架最优控制研究[J]. 广西大学学报(自然科学版),2014,02:300-307.
TANG Shichen, CHEN Long, WANG Ruochen, et al. Research on Optimal Control of Active Suspension Based on Damping Multi-modal Switching[J]. Journal of Guangxi University: Nat Sci Ed, 2014,02:300-307.
[5]谢健,汪若尘,叶青,等. 直线电机式主动悬架协调车身姿态控制研究[J]. 汽车工程学报,2015,05:341-347.
XIE Jian, WANG Ruochen, YE Qing, et al. Study on Coordination Control of Body Posture for Active Suspension with Linear Motor[J]. Chinese Journal of Automotive Engineering, 2015, 05:341-347.
[6]陈龙,江浩斌,周孔亢,等. 半主动悬架系统设计及控制[J]. 机械工程学报,2005,05:137-141.
CHEN Long, JIANG Haobing, ZHOU Kongkang, et al. Control and Design for Semi-active Suspension[J]. Chinese Journal of Mechanical Engineering, 2005,05:137-141.
[7]NAKANO K, SUDA Y, NAKADAI S. Self-powered active vibration control using a single electric actuator[J]. Journal of Sound and Vibration, 2003, 260(2): 213-235.
[8]KAWAMOTO Y, SUDA Y, INOUE H, et al. Electro-mechanical suspension system considering energy consumption and vehicle manoeuvre[J]. Vehicle System Dynamics, 2008, 46(S1): 1053-1063.
[9]来飞,黄超群. 采用电磁作动器的车辆主动悬架的研究[J]. 汽车工程,2012,02:170-174.
LAI Fei, HUANG Chaoqun. An Investigation into Vehicle Active Suspension with Electromagnetic Actuator[J]. Automotive Engineering, 2012,02:170-174.
[10]裴金顺,李以农,王艳阳,等. 采用电磁直线电机的主动悬架控制系统的设计与能量分析[J]. 汽车工程,2014,11:1386-1391+1377.
PEI Jinshun, LI Yinong, WANG Yanyang, et al. Design and Energy Analysis of an Suspension Control System with Electromagnetic Linear Motor[J]. Automotive Engineering, 2014,11:1386-1391+1377.
[11]EBRAHIMI B, BOLANDHEMMAT H, KHAMESEE M B, et al. A hybrid electromagnetic shock absorber for active vehicle suspension systems[J]. Vehicle System Dynamics, 2011, 49(1-2): 311-332.
[12]GYSEN B L J, PAULIDES J J H, JANSSEN J L G, et al. Active electromagnetic suspension system for improved vehicle dynamics[J]. Vehicular Technology, IEEE Transactions on, 2010, 59(3): 1156-1163.
[13]GYSEN B L J, VANDER SANDE T P J, PAULIDES J J H, et al. Efficiency of a regenerative direct-drive electromagnetic active suspension[J]. Vehicular Technology, IEEE Transactions on, 2011, 60(4): 1384-1393.
[14]柴陵江,孙涛,冯金芝,等. 基于层次分析法的主动悬架LQG控制器设计[J]. 汽车工程,2010,08:712-718.
CHAI Lingjiang, SUN Tao, FENG Jinzhi, et al. Design of LQG Controller for Active Suspension System Based on Analytic Hierarchy Process[J]. Automotive Engineering, 2010,08:712-718.
[15]闫光辉,关志伟,杜峰,等. 车辆主动悬架自适应LQG控制策略研究[J]. 机械科学与技术,2014,03:432-437.
YAN Guanghui, GUAN Zhiwei, DU Feng, et al. Study on the Control Strategy of Adaptive LQG for Active Suspension Vehicle. Mechanical Science and Technology for Aerospace Engineering, 2014,03:432-437.

PDF(1558 KB)

347

Accesses

0

Citation

Detail

段落导航
相关文章

/