钢护筒-混凝土灌注桩承台节点抗震性能试验研究

张菊辉1 王伟1 姜大威1 管仲国2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 79-84.

PDF(881 KB)
PDF(881 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 79-84.
论文

钢护筒-混凝土灌注桩承台节点抗震性能试验研究

  • 张菊辉1 王伟1 姜大威1 管仲国2
作者信息 +

Tests for aseismic performance of pile-to-pile cap joint of cast-in-place piles with steel casings

  • ZHANG Ju-hui1 WANG Wei1 JIANG Da-wei1 GUAN Zhong-guo2
Author information +
文章历史 +

摘要

为探究钢护筒与承台的合理连接方式,对钢护筒-混凝土灌注桩承台节点浅嵌入、锚筋嵌入、深嵌入三种不同的构造形式进行拟静力试验,分析三种不同试件的破坏特征、滞回性能、承载力、刚度、延性及耗能性能等抗震指标,研究钢护筒与承台连接节点形式对节点抗震性能的影响。结果表明:深嵌入节点构造方式的抗震性能最佳,可明显改善节点的承载能力、累积滞回耗能与刚度。锚筋嵌入和浅嵌入试件的主要破坏模式为近节点区承台混凝土的开裂与剥落,浅嵌入的破坏效应最为明显,承载力最差,锚筋嵌入形式虽在承载能力上相较浅嵌入形式提高20%,但仍然提供一种弱节点连接形式。

Abstract

To explore a reasonable joint connection between casing and cap, quasi-static tests were conducted on three specimens constructed with different pile-to-pile cap joint forms including a shallow embedment form, a shallow embedment one strengthened with anchor bars and a deep embedment one. Test results were evaluated with aseismic indexes including failure feature, hysteretic behavior, load-bearing, stiffness, ductility, and energy dissipation to study the effects of joint connection form between casing and cap on aseismic performance of joint. The results showed that the deep embedment form has the best aseismic performance, it can significantly improve the joint’s load-bearing capacity, and accumulate hysteretic dissipated energy and stiffness; cracking and spalling of cap concrete cover near joint zone are the main failure modes for other two forms; the shallow embedment form’ failure effect is the most obvious, and its load-bearing capacity is the poorest; although the shallow embedment strengthened with anchor bars form has a 20% higher load-bearing capacity than the shallow embedment one does, it is a weak joint connection form.

关键词

钢护筒 / 混凝土灌注桩 / 桩头节点 / 滞回性能 / 承载力 / 抗震性能

Key words

steel casing / cast-in-place pile / pile-to-pile cap joint / hysteretic behavior / load-bearing capacity / aseismic performance

引用本文

导出引用
张菊辉1 王伟1 姜大威1 管仲国2. 钢护筒-混凝土灌注桩承台节点抗震性能试验研究[J]. 振动与冲击, 2018, 37(3): 79-84
ZHANG Ju-hui1 WANG Wei1 JIANG Da-wei1 GUAN Zhong-guo2. Tests for aseismic performance of pile-to-pile cap joint of cast-in-place piles with steel casings[J]. Journal of Vibration and Shock, 2018, 37(3): 79-84

参考文献

[1] 张菊辉, 姜大威. 钢护筒混凝土灌注桩的基础抗震性能研究进展[J].水资源与工程学报, 2014, 25(5): 142-146.
Zhang Ju-hui, Jiang Da-wei. Progress in basic anti-seismic property of steel tube concrete drilled pile [J]. Journal of Water Resources & Water Engineering, 2014, 25(5): 142-146. (in Chinese)
[2] 叶爱君, 张喜刚, 刘伟岸. 河床冲刷深度变化对大型桩基桥梁地震反应的影响[J]. 土木工程学报, 2007, 40(3): 58-62.
Ye Ai-jun, Zhang Xi-gang, Liu Wei-an. Effects of riverbed scouring depth on the seismic response of bridges on pile foundations [J]. China Civil Engineering Journal, 2007, 40(3): 58-62. (in Chinese)
[3] 叶爱君,刘伟岸,王斌斌. 高桩承台基础与桥梁结构的动力相互作用[J]. 同济大学学报, 2007, 35(9):1163-1168.
Ye Ai-jun, Liu Wei-an, Wang Bin-bin. Dynamic interaction between high-rise pile cap foundation and bridge structure [J]. Journal of Tongji University, 2007, 35(9):1163-1168. (in Chinese)
[4] 胡世德, 叶爱君. 苏通长江公路大桥结构抗震性能研究报告[R]. 上海:同济大学土木防灾国家重点实验室, 2002.
Hu Shi-de, Ye Ai-jun. Research report on seismic performance of Su Tong Yangtze river highway bridge[R]. Shanghai: State Key Laboratory For Disaster Reduction in Civil Engineering, 2002. (in Chinese)
[5] 易笃韬, 邵旭东, 李立峰, 许春绵. 软土地基上桥台桩基受力算法研究[J]. 中国公路学报, 2007, 20(5): 59-64.
Yi Du-tao, Shao Xu-dong, Li Li-feng, Xu Chun-mian. Research on algorithm for mechanics of abutment pile foundation on soft ground [J].China Journal of Highway and Transport, 2007, 20(5): 59-64. (in Chinese)
[6] Fleming, W. G. K., Weltman, A. J., Randolph, M. F., Elson, W. K. Piling Engineering. New York: John Wiley & Sons, Inc, 1985.
[7] Pender, M. J. Aseismic pile foundation design analysis[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(2): 49-160.
[8] Hossein Tahghighi, Kazuo Konagai. Numerical analysis of nonlinear soil-pile group interaction under lateral loads[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(5): 463-474.
[9] 赵岩, 林家浩, 唐光武. 复杂结构局部非线性地震反应精细时程分析[J]. 大连理工大学学报, 2004.44(2): p. 190-194.
Zhao Yan, Lin Jia-hao, Tang Guang-wu. Precise integration of seismic responses of complex structures with local non-linearity[J]. Journal of Dalian University of Technology, 2004.44(2): 190-194. (in Chinese)
[10] 唐勇. 钢护筒对超长钻孔灌注桩承载性能的影响[J]. 工程勘察, 2012, 40(7): 28-31.
Tang Yong. The influence of steel casing on behavior of over-long drilled pile[J]. Geotechnical investigation & surveying, 2012, 40(7): 28-31. (in Chinese)
[11] 穆保岗,班笑,龚维明. 考虑钢护筒效应的混合桩水平承载性能分析[J]. 土木建筑与环境工程, 2011, 33(3): 68-73, 118.
Mu Bao-gang, Ban Xiao, Gong Wei-ming. Lateral load and capacity analysis of variable section hybrid piles with steel casing[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(3): 68-73,118. (in Chinese)
[12] 黄亮生, 冯向宇. 钢护筒参与桩身受力的构造处理和计算分析[J]. 结构工程师, 2005, 21(4): 52-55.
Huang Liang-sheng, Feng Xiang-yu. Structural treatment and analysis of combined piles for super-long-span bridges[J]. Structural Engineers, 2005, 21(4): 52-55. (in Chinese)
[13] 方诗圣, 丁仕洪. 钢围堰封底混凝土与桩基钢护筒间的粘结力研究[J]. 合肥工业大学学报(自然科学版), 2009, 32(2): 241-244.
Fang shi-sheng, Ding shi-hong. Research on the bond stress between steel cofferdam subsealing concrete and the steel pipe of pile foundation[J]. Journal of Hefei University of Technology, 2009, 32(2): 241-244. (in Chinese)
[14] Silva, P.F., Seible, F. Seismic performance evaluation of cast-in-steel-shell (CISS) piles[J]. ACI Struct. J., 2001, 98(1), 36-49.
[15] Hagiwara Kenji, Kawabata Noriyuki, Yamaguchi Tanemi, et. al. Performance and design of concrete-steel composite pipe ‘NS rib pipe’ [R]. Nippon Steel Corp, 1992.
[16] JGJ 101-96, 建筑抗震试验方法规程[S].中国建筑工业出版社,1997,北京.
JGJ 101-96, Code Specification of test methods for earthquake resistant building [S]. China Architecture & Building Press, 1997, Beijing. (in Chinese)
[17] JTG D63-2007, 公路桥涵地基与基础设计规范[S].人民交通出版社, 2007, 北京.
JTG D63-2007, Code for design of ground base and foundationof highway bridges and culverts[S]. China Communications Press, 2007, Beijing. (in Chinese)
[18] 王军文, 张伟光, 李建中. 预应力混凝土空心墩拟静力试验与数值分析[J]. 桥梁建设, 2015, 45(3): 63-68.
Wang Jun-wen, Zhang Wei-guang, Li Jian-zhong. Quasi-static tests and numerical analysis of prestressed concrete hollow pier [J]. Bridge Construction, 2015, 45(3):63-68. (in Chinese)
[19] 王军文, 张伟光, 艾庆华. PC和RC空心墩抗震性能试验对比[J]. 中国公路学报, 2015, 28(4): 76-85.
Wang Jun-wen, Zhang Wei-guang, Ai Qing-hua. Comparative experiment on seismic performance of PC and RC hollow piers. China Journal of Highway and Transport, 2015, 28(4):76-85.(in Chinese)
[20] 谢文, 孙利民. 采用附加耗能构件的双柱式高墩地震损伤控制研究[J]. 振动与冲击, 2015, 34(20): 98-103, 114.
Xie Wen, Sun Li-min. Seismic damage control for twin-column tall piers by using supplemental energy dissipation elements[J]. Journal of Vibration and Shock. 2015, 34(20): 98-103,114. (in Chinese)
[21] 葛继平.节段拼装桥墩抗震性能试验研究与理论分析[D].上海:同济大学, 2008.
Ge Ji-ping. Experimental and theoretical studies on seismic performance of precast segmental bridge columns[D]. Shanghai:Tongji University, 2008.(in Chinese)
[22] Chopra, A.K. (2001). Dynamics of structures[M]. New Jersey: Prentice Hall.

PDF(881 KB)

Accesses

Citation

Detail

段落导航
相关文章

/