行人SMD模型参数对人群-结构耦合动力特性的影响

王彩锋,高世桥,牛少华,刘海鹏

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 91-97.

PDF(1466 KB)
PDF(1466 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 91-97.
论文

行人SMD模型参数对人群-结构耦合动力特性的影响

  • 王彩锋,高世桥,牛少华,刘海鹏
作者信息 +

Influences of pedestrian SMD model parameters on dynamic characteristics of crowd-structure interaction

  • WANG Cai-feng, GAO Shi-qiao, NIU Shao-hua, LIU Hai-peng
Author information +
文章历史 +

摘要

分析行人单自由度弹簧-质量-阻尼器系统中模型参数的随机特性,建立步行人群-结构耦合自由振动方程,采用复模态法求解得到结构的固有频率和阻尼比。研究行人频率、阻尼比和弹性质量对结构基频和阻尼比变化率的影响;应用Monte-Carlo仿真,得到不同频率结构在不同的人群与结构质量比下的基频和阻尼比的95%及5%分位点。分析表明,当空载结构与行人的频率比约为1.1时,结构基频和阻尼比的变化率最大;空载结构基频离行人频率范围较近时,质量比增大会使结构基频和阻尼比的随机散布增大。

Abstract

Model parameters’ change characteristics of a pedestrian single-DOF spring-mass-damper (SMD) system were investigated. The coupled free vibration equation of a walking crowd-structure system was established. The structure natural frequencies and damping ratios were derived with the complex mode method. The influences of pedestrian model’s natural frequency, damping ratio and elastic mass on change rates of the structure fundamental frequency and damping ratio were studied, respectively. Using Monte-Carlo simulation, a series of meaningful results were obtained under different mass ratios of crowd to structure. The results indicated that change rates of the structure’s fundamental frequency and damping ratio are the maximum when the ratio of the structure fundamental frequency (no crowd) to pedestrian one is about 1.1; when the structure fundamental frequency (no crowd) is close to the allowed range of pedestrian model’s natural frequency, the increase in mass ratio of crowd to structure causes the random distribution of the structure’s fundamental frequency and damping ratio to expand.

 

关键词

人行桥 / 弹簧-质量-阻尼器 / 步行人群 / 基频 / 耦合作用

Key words

footbridge / spring-mass-damper / walking crowd / fundamental frequency / interaction

引用本文

导出引用
王彩锋,高世桥,牛少华,刘海鹏 . 行人SMD模型参数对人群-结构耦合动力特性的影响[J]. 振动与冲击, 2018, 37(3): 91-97
WANG Cai-feng, GAO Shi-qiao, NIU Shao-hua, LIU Hai-peng. Influences of pedestrian SMD model parameters on dynamic characteristics of crowd-structure interaction[J]. Journal of Vibration and Shock, 2018, 37(3): 91-97

参考文献

[1] Zivanovic S, Pavic A, Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review[J]. Journal of Sound and Vibration, 2005, 279 (1-2): 1-74.
[2] Niu S H, Wang C F, Gao S Q. A novel crowd random loads model for pedestrians walking on footbridge[J]. Archive of Applied Mechanics, 2016: 1-13.
[3] UK NA to EN1. Actions on structures-part 2: traffic loads on bridges[S]. London, 2008.
[4] EN 03. Design of footbridges guideline: human induced vibrations of steel structures[S]. Germany, 2008.
[5] SETRA. Assessment of vibrational behavior of footbridges under pedestrian loading[S]. Paris, 2006.
[6] Zivanovic S, Diaz I M, Pavic A. Influence of walking and standing crowds on structural dynamic properties[C]//Proceeding of IMAC-XXVII, Orlando, 2009.
[7] Zivanovic S. Benchmark footbridge for vibration serviceability assessment under vertical component of pedestrian load[J]. Journal of Structural Engineering, 2012, 138 (10): 1193-1202.
[8] Georgakis C T, Jorgensen N G. Change in mass and damping on vertically vibrating footbridges due to pedestrians[C]//Proceeding of  SEM IMAC XXXI, 2013 (3): 37-45.
[9] Qin J W, Law S S, Yang Q S, et al. Pedestrian–bridge dynamic interaction, including human participation[J]. Journal of Sound and Vibration, 2013, 332(4): 1107-1124.
[10] 李红利,陈政清.人-桥竖向动力相互作用效应理论与试验研究[J]. 土木工程学报, 2014 (6): 78-87.
LI Hong-li, CHEN Zheng-qing. Analytical and experimental study on vertically dynamic interaction between human and bridge[J]. China Civil Engineering Journal, 2014 (6): 78-87.
[11] 谢旭,钟婧如,张鹤,等. 人-桥竖向耦合振动计算方法[J]. 振动与冲击,2016, 35 (5): 108-114.
    XIE Xu, ZHONG Jing-ru, ZHANG He, et al. Calculation method of human-bridge vertically coupled vibration[J]. Journal of Vibration and Shock, 2016, 35 (5): 108-114.
[12] Caprani C C, Keogh J, Archbold P, et al. Characteristic vertical response of a footbridge due to crowd loading[C]//Proceeding of EURODYN, Leuven, 2011: 978-985.
[13] Archbold P, Keogh J, Caprani C C, et al. A parametric study of pedestrian vertical force models for dynamic analysis of footbridges[C]//Proceeding of EVACES, 2011.
[14] Venuti F, Racic V, Corbetta A. Pedestrian-structure interaction in the vertical direction: coupled oscillator-force model for vibration serviceability assessment[C]//Proceeding of EURODYN, Porto, 2014: 915-920.
[15] 刘隆,谢伟平,徐薇.均布人群对简支欧拉梁动力特性的影响[J].工程力学,2012,29 (8):189-194.
LIU Long, XIE Wei-ping, XU Wei. Effect on modal properties of a simply supported Euler beam occupied by a distributed crowd[J]. Engineering Mechanics, 2012, 29 (8): 189-194.
[16] 何浩祥,闫维明,张爱林.人行激励下梁板结构与人体耦合作用研究[J].振动与冲击,2008, 27 (10): 130-133.
 HE Hao-xiang, YAN Wei-ming, ZHANG Ai-lin. Dynamic interaction between human and beam-slab structures under human walking excitation[J]. Journal of Vibration and Shock, 2008, 27 (10): 130-133.
[17] 何浩祥,纪金豹,孔丹丹.人群行走激励的数值模拟及动力耦合作用研究[J].计算力学学报, 2011, 28(1): 53-58.
    HE Hao-xiang, JI Jin-bao, KONG Dan-dan. Numerical simulation of crowd excitation and dynamic interaction with structure[J]. Chinese Journal of Computational Mechanics, 2011, 28(1): 53-58.
[18] 陈舟,颜全胜,胡俊亮,等.人群-桥梁耦合振动研究及参数分析[J].华南理工大学学报,2014, 42 (5): 75-83.
CHEN Zhou, YAN Quan-sheng, HU Jun-liang, et al. Coupling vibration investigation and parameter analysis of crowd-bridge system[J]. Journal of South China University of Technology, 2014, 42 (5): 75-83.
[19] 金飞飞.轻质FRP人行桥振动舒适度设计方法研究[D].清华大学, 2012.
[20] Kasperski M. Damping induced by pedestrians[C]// Proceeding of EURODYN, Porto, 2014: 1059-1064.
[21] Salyards K A, Noss N C. Experimental evaluation of the influence of human-structure interaction for vibration serviceability[J]. Journal of Performance of Constructed Facilities, 2014, 28 (3): 458-465.
[22] Matsumoto Y, Griffin M J. Mathematical models for the apparent masses of standing subjects exposed to vertical whole-body vibration[J]. Journal of Sound and Vibration, 2003, 260 (3): 431-451.
[23] Shahabpoor E. Dynamic interaction of walking humans with pedestrian structures in vertical direction experimentally based probabilistic modelling[D]. University of Sheffield, 2014.
[24] Zhang M, Georgakis C T, Qu W, et al. SMD model parameters of pedestrians for vertical human-interaction[C]//Proceeding of SEM XXXIII, 2015: 311-317.
[25] Zivanovic S. Modelling human actions on lightweight structures: experimental and numerical developments[C]//Proceeding of MATEC Web of Conferences, 2015.
[26] Silva F T, Brito H M B F, Pimentel R L. Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges[J]. Canadian Journal of Civil Engineering, 2013, 40 (12): 1196-1204.
[27] Toso M A, Gomes H M, Silva F T, et al. Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations[J]. Mechanical Systems and Signal Processing, 2016, 72: 590-606.
[28] Jimenez-Alonso J F, Saez A. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges[J]. Informes De La Construccion, 2014, 66: 10-3989.
[29] Jimenez-Alonso J F, Saez A, Caetano E, et al. Vertical crowd-structure interaction model to analyze the change of the modal properties of a footbridge[J]. Journal of Bridge Engineering, 2016: C4015004.
[30] 吴冬雁. 考虑荷载随机性影响的桥梁振动及噪声环境研究 [D].浙江大学, 2014.

PDF(1466 KB)

Accesses

Citation

Detail

段落导航
相关文章

/