基于SNGR方法研究增升装置缝翼噪声的抑制效果

余培汛1,潘凯1,白俊强2,韩啸2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 110-115.

PDF(2025 KB)
PDF(2025 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 110-115.
论文

基于SNGR方法研究增升装置缝翼噪声的抑制效果

  • 余培汛1 ,潘凯1,白俊强2 ,韩啸2
作者信息 +

Suppression on Aerodynamic noise of slat by using SNGR method

  • YUPei-xun 1  PAN Kai 1  BAI Jun-qiang 2  HAN Xiao 2 
Author information +
文章历史 +

摘要

耦合湍流速度生成模型与声传播方程,形成了一套具备模拟声源在非均匀流场中传播的CAA混合预测方法,即SNGR方法。针对SNGR方法的可靠性验证,选用了30P30N标模的缝翼噪声传播算例,对比分析缝翼后缘某监测点的声压频谱曲线及辐射噪声指向性云图,其计算结果与参考文献结果吻合度较好。在此基础上,设计了几种不同几何形状的缝翼构型,研究其对气动噪声的抑制效果。采用SNGR方法对比分析了各构型的声压分布云图、噪声指向性云图,并通过LES/FWH方法对噪声抑制效果进行了验证分析,结果表明:通过延长前缘缝翼长度可有效增强剪切层的稳定性,降低剪切层与缝翼背风区壁面碰撞的强度,从而达到抑制噪声的效果;SNGR方法能有效应用到二维增升装置的噪声预测及抑制问题中。

Abstract

Coupled with turbulent velocity generation model and sound propagation equation, the SNGR (Stochastic Noise Generation and Radiation) method which is able to simulation the noise source propagate in the non-uniform flow field has been formed. In order to validate the SNGR method, the noise propagation of the 30P30N model’s slat is selected. Comparing the frequency spectrum of the monitor at trailing edge of slat and the contour of noise directivity, numerical results are well consistent with the literature’s results. Several different geometrical configurations of slats are designed, researching their depressing effects on aerodynamic noise. Adopting the SNGR method, the acoustic pressure contour and noise directivity contour of each configuration are analyzed, and the noise depressing effects are validated by means of LES/FWH method, the result shows: 1. By extending the effective length of the leading edge of slat, the stability of shear layer is strengthened and the intensity of the collision between shear layer and leeward region of slat is decreased. Because of these reasons, the noise of slat is reduced. 2. The SNGR method can be applied to the noise prediction and suppression of two dimensional high-lift configuration.
 

关键词

湍流速度生成模型 / 声传播方程 / 缝翼 / 气动噪声 / 剪切层

Key words

turbulent velocity generation model / sound propagation equation / slat / aerodynamic noise / shear layer

引用本文

导出引用
余培汛1,潘凯1,白俊强2,韩啸2 . 基于SNGR方法研究增升装置缝翼噪声的抑制效果[J]. 振动与冲击, 2018, 37(4): 110-115
YUPei-xun 1 PAN Kai 1 BAI Jun-qiang 2 HAN Xiao 2 . Suppression on Aerodynamic noise of slat by using SNGR method[J]. Journal of Vibration and Shock, 2018, 37(4): 110-115

参考文献

[1] R. Ewert , J. Dierke. CAA-RPM prediction and validation of slat setting influence on broadband high-lift noise generation[C]. AIAA-2010-3833.
[2] A. Fosso Pouangue, C.Mnasri. Parameterization and optimization of broadband noise for high-lift devices[C]. AIAA-2013-2065.
[3] Olof Grundestam, Shia-Hui Peng. Local flow properties in relation to noise generation for low-noise high-lift configurations[C]. AIAA-2012-0278.
[4] Xin Wang and Zhiwei Hu. Detached Eddy Simulation of High-Lift Wing Slat Track and Cut-Out Noise[C]. AIAA-2016-0258.
[5] Nicolas Molin. Prediction of aircraft high-lift device noise using dedicate danalytical model[C]. AIAA-2003-3255.
[6] Y. P. Guo, K.J.Yamamoto. Component-Based Empirical Model for High-Lift System Noise Prediction[J]. Journal of Aircraft , 2003, 40(5):914-922.
[7] N.Reiche, M.Lummer. Towards high-lift noise from Fast Multipole BEM with anisotropic synthetic turbulence sources[C]. AIAA-2015-2672.
[8] Craig L.Streett. Aerodynamic Noise Reduction for High-Lift Devices on a Swept Wing Model[C]. AIAA-2006-212.
[9] Yuzuru YOKOKAWA. Noise Generation Characteristics of a High-lift Swept and Tapered Wing Model[C]. AIAA-2013-2062.
[10] Mitsuhiro Murayama, Yuzuru Yokokawa. Study on Noise Generation from Slat Tracks Using a High-Lift Wing Model[C].  AIAA-2015-3141.
[11] 吕宏强,朱国祥,宋江勇. 线化欧拉方程的高阶间断有限元数值解法研究[J]. 力学学报, 2011, 43(3): 621-624.
LYU Hong-qiang, ZHU Guo-xiang, SONG Jiang-yong. High-order discontinuous galerkin solution of linearized Euler equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(3):621-624.
[12] 卢清华, 陈宝. 基于LES方法的增升装置气动噪声特性分析[J]. 空气动力学学报, 2016, 34(4):448-455.
    LU Qing-hua, CHEN Bao. Analysis of aeroacoustics characteristics of high lift device using LES method[J]. Acta Aerodynamica Sinica, 2016, 34(4): 448-455.
[13] 乔渭阳, Ulf Michel. 襟翼侧缘噪声的理论模拟与分析[J]. 声学学报, 2002, 27(3): 267-272.
    QIAO Wei-yang, Ulf Michel. Theoretical study on flap side-edge noise[J]. Acta Acustica, 2002, 27(3):267-272.
[14] M.Karweit, P.Belanc-Benon,D.Juve, and G. Comte-Billot. Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance[J]. Journal of Acoustic Society of America, 89(1):52-62,1991.
[15] C.Bailly, P.Lafon, and S.Candel. Astochastic approach to compute noise generation and radiation of free turbulent flows[C]. AIAA-95-029.
[16]  Meelan Choudhari and David P. Lockard. Assessment of Slat Noise Predictions for 30P30N High-Lift Configuration from BANC-III workshop[C]. AIAA-2015-2844.
[17] 徐航手,季振林,康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击,2010, 29(4): 107-110.
    XU Hang-shou, JI Zhen-lin, KANG Zhong-xu. Three-dimensional time-domain computational approach for predicting transmission loss of reactive silencers [J]. Journal of vibration and shock, 2010, 29(4): 107-110.
[18] 刘俊,杨党国,王显圣. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击,2016,35(20):154-159.
    LIU Jun, YANG Dang-guo, WANG Xian-sheng. Numerical simulation of near-field cavity noise by URANS and DDES. Journal of vibration and shock, 2016, 35(20): 154-159.

PDF(2025 KB)

509

Accesses

0

Citation

Detail

段落导航
相关文章

/