基于模糊控制的前轮转弯控制律设计

赵喆 1,贾玉红 2 田剑波3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 128-135.

PDF(1320 KB)
PDF(1320 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 128-135.
论文

基于模糊控制的前轮转弯控制律设计

  • 赵喆 1 , 贾玉红 2    田剑波3
作者信息 +

A Design of Nose Wheel Steering Control Law Based on Fuzzy Control

  • ZHAO Zhe 1   JIA Yuhong 2    TIAN Jianbo3
Author information +
文章历史 +

摘要

飞机在地面低速滑行阶段转弯时前轮和主轮不能发生侧滑[1]。在实际应用中,为满足上述条件,前轮偏转角速度多取为许用角速度下限进行匀速转弯[1],但该方式大幅降低了飞机的地面操纵性能。同时,由于复杂布局小车式起落架系统的自由度较高,往往难以求出前轮许用偏转角速度的通解。为解决上述问题,对复杂布局小车式起落架系统建立一套动力学分析模型;并基于模糊控制理论,设计一套前轮转弯角速度控制律。经仿真运算证明:飞机前轮转弯许用角速度主要受飞机速度、前轮偏转角度以及飞机航向载荷等因素影响;在不改变飞机构型、不影响飞机性能及安全性的前提下,可通过降低飞机速度及发动机推力等方式提高起落架系统许用前轮转弯角速度;模糊控制理论可应用于飞机前轮转弯角速度控制律设计;基于模糊控制理论的飞机前轮转弯角速度控制律可充分发掘起落架系统地面运动能力,并显著提升起落架系统地面操纵性能。

Abstract

It is required that, during low-velocity taxi phase, neither nose gear nor main gears shall side slide when aircraft swerving[1]. In practical application, nose wheel turns at a constant rate, which equal to the lower limit of nose wheel allowable steering rate, to meet above requirements [1]. However, in this control method, aircraft’s ground maneuver control performance reduces, significantly. Meanwhile, due to the degree of freedom of a multiple-bogie undercarriage system is high, it is too complicated to find the general solution of nose wheel allowable steering rate. To solve above problems, set up a kinetic analysis model of a multiple-bogie undercarriage system and design a control law based on the fuzzy control theory. The calculations and simulations demonstrate that allowable nose wheel steering rate could be affected by aircraft’s velocity, nose wheel steering angle and engine thrust; allowable nose wheel steering rate could be improved by reducing aircraft’s velocity and engine thrust on condition that aircraft’s configuration is identical and aircraft’s safety and performance not reduce; Fuzzy control theory could be implemented on nose wheel steering rate control design; Nose wheel steering rate control law based on the fuzzy control theory could fully develops aircraft’s ground maneuver control capability and improves aircraft’s ground maneuver control performance.

 

关键词

起落架 / 复杂布局小车式起落架;前轮转弯 / 模糊控制 / 控制律

Key words

 Landing Gear / Multiple-bogie Undercarriage / Nose Wheel Steering / Fuzzy Control / Control Law

引用本文

导出引用
赵喆 1,贾玉红 2 田剑波3. 基于模糊控制的前轮转弯控制律设计[J]. 振动与冲击, 2018, 37(4): 128-135
ZHAO Zhe 1 JIA Yuhong 2 TIAN Jianbo3. A Design of Nose Wheel Steering Control Law Based on Fuzzy Control[J]. Journal of Vibration and Shock, 2018, 37(4): 128-135

参考文献

[1] 高泽迥,黄振威,等.飞机设计手册,第14册,起飞着陆系统设计 [M].北京:航空工业出版社,2002:38-79.
Gao Z,Huang Z.et al.Airplane Design Manual, Book 14, Taking Off and Landing System Design[M].Beijing:Aviation Industry Press, 2002:38-79 (in Chinese).
[2] Currey S N.Aircraft Landing Gear Design: Principles and Practices[M].4th ed.Washington D.C.:AIAA,1988:7-31
[3] 聂宏,魏小辉.大型民用飞机起落架关键技术[J]. 南京航空航天大学学报, 2008, 40(4):427-432.
Nie H,Wei X.Key Technologies for Landing Gear of Large Civil Aircrafts[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2008, 40(4):427-432 (in Chinese).
[4] Sivaramakrishnan M M.Influence of Landing Gear Flexibility on Aircraft Performance During Ground Roll[J].Journal of Aircraft,1981,18(11):991-992.
[5] Pritchard J.Overview of Landing Gear Dynamics[J].Journal of Aircraft,2001,38(1):130-137.
[6] Prashant D K.Simulation of Asymmetric Landing and Typical Ground Maneuvers for Large Transport Aircraft[J].Aerospace Science and Technology,2003,7(8):611-619.
[7] Roundhill J.The Future of Commercial Aviation, Building on Our Legacy, AIAA-2003-2552[R]. Dayton, Ohio:2003.
[8] Jarry P.The Future of Commercial Aviation, Airbus View, AIAA-2003-2553[R]. Dayton, Ohio:2003.
[9] Howcroft C,Lowenberg M,Neild S.Shimmy of an Aircraft Main Landing Gear With Geometric Coupling and Mechanical Freeplay[J]. Journal of Computational and Nonlinear Dynamics,2015:10(5):051000.
[10] Raju G V S,Zhou J. Adaptive Hierarchical Fuzzy Controller[J].IEEE Transaction on System, Man and Cybernetics,1993,23(4):973-980.
[11] Huang S,Lin C.Application of A Fuzzy Enhance Adaptive Control on Active Suspension System[J].International Journal of Computer Application in Technology,2004,20(4):152-160.
[12] AI-Holou Nizar. Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension System[J].IEEE Transactions on Fuzzy System,2002,10(2):234-246
[13] 王丕宏,高金源,杨克明. 飞机大机动飞行的一种模糊控制系统设计方法[J]. 北京航空航天大学学报, 2000, 26(5):513-515.
Wang P,Gao J,Yang K. Design Method of Fuzzy System to Control Large Maneuver Flight of Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5):513-515 (in Chinese).
[14] Bououden S,Chadli M, Karimi H R. A Robust Predictive Control Design for Nonlinear Active Suspension Systems[J]. Asian Journal of Control,2016,18(1):122-132.
[15] Rodríguez-Fernández V,Menéndez H D,Camacho D.Automatic Profile Generation for UAV Operators Using A Simulation-based Training Environment[J]. Progress in Artificial Intelligence,2016,5(1):37-46
 

PDF(1320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/