豚鼠耳蜗基底膜响应特性的实验测试与分析

塔娜1,张景1,许立富1,周雷2,黄新生2,饶柱石1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 160-164.

PDF(1413 KB)
PDF(1413 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 160-164.
论文

豚鼠耳蜗基底膜响应特性的实验测试与分析

  • 塔娜1,张景1,许立富1,周雷2,黄新生2,饶柱石1
作者信息 +

Experimental measurement and analysis on dynamic response of cochlear basilar membrane in guinea pig

  • TA Na1, ZHANG Jing1, XU Lifu1, ZHOU Lei2, HUANG Xinsheng2, RAO Zhushi1
Author information +
文章历史 +

摘要

为探究耳蜗基底膜的动态特性,利用激光多普勒测振仪(Laser Doppler Vibrometer, LDV)测试了豚鼠耳蜗基底膜在纯音激励下的动态响应。实验时,选取了14只新鲜的豚鼠耳蜗离体标本,分别测试了70dB、80dB、90dB三种声激励下耳蜗基底膜的速度响应和位移响应,并改变输入声音信号的频率,研究了基底膜的振动特性。实验结果表明:纯音激励下基底膜的振动是正弦振动;在大小相同、频率不同的纯音激励下,基底膜同一位置处振动速度和振动位移大小不同,基底膜具有频率选择特性,在最佳频率处振动响应最大;基底膜在不同大小声压激励下相位响应趋势接近,超过最佳频率后相位滞后迅速增加;基底膜的运动具有行波特征。实验方法和测试结果可为人耳耳蜗听觉机制的研究提供指导。

Abstract

To explore the dynamic characteristics of basilar membrane, the dynamic responses to pure tone in the basilar membrane (BM) of guinea pig were measured by using Laser Doppler Vibrometer (LDV).14 fresh specimens of guinea pig cochlea in vitro were used to test the velocity response and the displacement response of BM under pure tone excitation of 70dB, 80dB, and 90dB SPL.And the vibration characteristics of BM was analyzed by changing the frequency of the input sound signal.The experimental results show that the vibration of BM under pure tone excitation is sinusoidal vibration. The vibration velocity and displacement of BM at the same location varies from the frequency of input sound signal and the BM has the frequency selective characteristics and the maximum vibration response appears at the best frequency.The phase responses of BM under different sound pressures excitation have the similar trend and phase-delay increases rapidly above the best frequency. The sound transmission in the BM has the characteristic of travelling wave. The experimental methods and results guided studying the auditory mechanism of human ear.
 

关键词

豚鼠 / 耳蜗 / 基底膜 / 实验测量 / 动态响应

Key words

guinea pig / cochlear / basilar membrane / experimental measurement / dynamic response

引用本文

导出引用
塔娜1,张景1,许立富1,周雷2,黄新生2,饶柱石1. 豚鼠耳蜗基底膜响应特性的实验测试与分析[J]. 振动与冲击, 2018, 37(4): 160-164
TA Na1, ZHANG Jing1, XU Lifu1, ZHOU Lei2, HUANG Xinsheng2, RAO Zhushi1. Experimental measurement and analysis on dynamic response of cochlear basilar membrane in guinea pig[J]. Journal of Vibration and Shock, 2018, 37(4): 160-164

参考文献

[1] B K SY G V. Experiments in hearing [M]. New York: McGraw-Hill Book Company, Inc, 1960.
[2] RHRODE W S. Observations of the Vibration of the Basilar Membrane in Squirrel Monkeys using the Mössbauer Technique [J]. The Journal of the Acoustical Society of America, 1971, 49(4): 1218-1231.
[3] NAM J H, FETTIPLACE R. Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification [J]. PloS one, 2012, 7(11): 5437-5451.
[4] RAMAMOORTHY S, NUTTALL A L. Outer Hair Cell Somatic Electromotility In Vivo and Power Transfer to the Organ of Corti [J]. Biophysical journal, 2012, 102(3): 388-398.
[5] NUTTALL A L, DOLAN D F, AVINASH G. Laser Doppler velocimetry of basilar membrane vibration [J]. Hearing research, 1991, 51(1991): 203-214.
[6] COOPER N P, RHODE W S. Basilar membrane mechanics in the hook region of cat and guinea-pig cochlea [J]. Hearing research, 1992, 63(1992): 163-190.
[7] REN T, HE W, GILLESPIE P G. Measurement of cochlear power gain in the sensitive gerbil ear [J]. Nature communications, 2011, 2(216): 1-7.
[8] 陈世雄, 宫琴, 金慧君. 用Gammatone滤波器组仿真人耳基底膜的特性 [J]. 清华大学学报(自然科学版), 2008, 48(06): 1044-1048.
CHEN Shi-xiong,GONG Qin, JIN Huijun. Gammatone filter bank to simulate the characteristics of the human basilar membrane [J]. Journal of Tsinghua University (Science and Technology), 2008, 48(06): 1044-1048.
[9] GUAN X, GAN R Z. Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs [J]. Hearing research, 2011, 277(1–2): 96-106.
[10] NUTTALL A L, DOLAN D F. Steady‐state sinusoidal velocity responses of the basilar membrane in guinea pig [J]. The Journal of the Acoustical Society of America, 1996, 99(3): 1556-1565.
[11] HALLWORTH R. Passive compliance and active force generation in the guinea pig outer hair cell [J]. Journal of neurophysiology, 1995, 74(6): 2319-2328.
[12] 武瑾. 噪声对大鼠耳蜗基底膜AIF表达的影响 [D]; 第四军医大学, 2013.
Wu Jin. Noise-induced Alteration in the Apoptosis Inducing Factor (AIF) Expression of the different turn Basilar Membrane in Rats Cochlea [D];The Fourth Military Medical University, 2013.
[13] 周雷, 许立富, 塔娜, 等. 豚鼠耳蜗基底膜振动的测试方法 [J]. 复旦学报(医学版), 2016, 43(01): 74-78.
ZHOU Lei, Xu Li-fu, Ta Na, et al. Testing methodology for the vibration in basilar membrane of guinea pig’s cochlea [J]. Fudan University Journal of Medical Sciences, 2016,43(01): 74-78.
[14] 郭梦和, 任田英, NUTTAL A. 正常豚鼠声刺激诱发的耳蜗基底膜振动 [J]. 第四军医大学学报, 1997, 18(05): 58-61.
GUO Meng-he, REN Tian-ying, NUTTAL A. Normal cochlear basilar membrane vibration elicited with sound stimuli in guinea pigs [J]. Journal of the Fourth Military Medical University, 1997, 18(05): 58-61.
[15] 郭梦和. 蜗内直流电对耳蜗基底膜振动的影响 [J]. 中华耳鼻咽喉科杂志, 2001, 18(05): 21-24.
GUO Meng-he. Effects of direct current on vibration of cochlear basilar membrane [J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2001, 18(05):21-24.
[16] CHEN Y, GUAN X, ZHANG T, et al. Measurement of Basilar Membrane Motion During Round Window Stimulation in Guinea Pigs [J]. Journal of the Association for Research in Otolaryngology, 2014, 15(6): 933-943.
[17] 吕萍. 建立豚鼠耳蜗生物三维数值模型的基础研究 [D]; 大连医科大学, 2012.
Lv Ping. Basic research of constructing guinea pigs cochlear biological three dimensional numerical model [D]; Dalian Medical University, 2012.
[18] 王如彬, 周轶, 张志康. 具有延时作用的基底膜主动耦合模型 [J]. 振动与冲击, 2011, 39(12): 49-53+73.
WANG Ru-bin, ZHOU Yi, ZHANG Zhi-kang. An active coupling model for basilar membrane with time-delay action [J]. Journal of Vibration and Shock, 2011, 39(12): 49-53+73.
[19] 杨琳, 华诚, 戴培东, 等. Corti器动力学行为的二维有限元分析 [J]. 振动与冲击, 2008, 27(04): 108-111+73.
YANG Lin, HUA Cheng, DAI Pei-dong, et al. Two dimensional FEM analysis for dynamic behavior of an organ of Corti [J].Journal of Vibration and Shock, 2008, 27(04): 108-111+173.
[20] 沈双. 内耳前庭半规管平衡机制生物力学模型研究 [D]; 大连理工大学, 2013.
SHEN Shuang. A Biomechanical Model for the Balance Mechanism of Vestibular Semicircular Canals in the Inner Ear [D]. Dalian University of Technology, 2013.
[21] 苏英锋, 孙秀珍, 刘迎曦, 等. 豚鼠内耳前庭-半规管生物力学模型研究 [J]. 力学学报, 2015, 47(06): 1065-1072.
SU Ying-feng, SUN Xiu-zhen, LIU Ying-xi, et al. Biomechanical model of the vetibule and semicircular canals of guinea pig. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(06):1065-1072.
[22] 苏英锋, 孙秀珍, 刘迎曦, 等. 豚鼠耳蜗生物数值模型的实验研究 [J]. 大连医科大学学报, 2015, 37(04): 324-327.
SU Ying-feng, SUN Xiu-zhen, LIU Ying-xi, et al. Establishment of the biomechanical model of cochlea of guinea pig [J]. Journal of Dalian Medical University, 2015, 37(04):324-327.
[23] REN T, NUTTALL A L. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea [J]. Hearing research, 2001, 151(1): 48-60.

PDF(1413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/