完全ASTFA方法及其在转子碰摩故障诊断中的应用

程军圣,刘贞涛,杨宇

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 165-169.

PDF(1987 KB)
PDF(1987 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 165-169.
论文

完全ASTFA方法及其在转子碰摩故障诊断中的应用

  • 程军圣 ,刘贞涛,杨宇
作者信息 +

Complete adaptive and sparsest analysis and its application to rotor rubbing fault diagnosis

  • Cheng Junsheng2,Liu Zhentao, Yang Yu
Author information +
文章历史 +

摘要

在进行自适应最稀疏分析(Adaptive and sparsest time-frequency analysis,ASTFA)时需要人为地选定分量带宽控制参数 , 选用不当会引起模态混淆,针对ASTFA的这种缺陷,利用总体平均经验模态分解(Ensembleempirical mode decomposition, EEMD)的自适应性,提出完全自适应最稀疏分析(Complete adaptive and sparsest time-frequency analysis ,CASTFA)方法。CASTFA以EEMD分解出来的分量为参考,自适应地确定 。仿真结果结果表明CASTFA能够抑制ASTFA方法的模态混淆现象,且分解效果优于EEMD方法。将CASTFA方法应用于转子碰摩故障诊断,结果表明了本方法的有效性。

Abstract

of a parameter of controlling a component’s bandwidth must be determined artificially When using adaptive and sparsest time-frequency analysis (ASTFA) .A improper will lead to the problem of mode mixing.Complete adaptive and sparsest time-frequency analysis( CASTFA) was proposed to restrain such a drawback of ASTFA.CASTFA use the intrinsic mode function(IMF) generated by ensembleempirical mode decomposition (EEMD) as reference to adaptively determine the .the simulation example showed the CASTFA can restraining the mode mixing of ASTFA,and perform better than EEMD in restraining mode mixing.The practical rotor rubbing fault diagnosis result turned out that CASTFA is efficient.

关键词

完全自适应最稀疏时频分析 / 模态混淆 / 转子碰摩

Key words

complete adaptive and sparsest time-frequency analysis;mode mixing / rotor rubbing

引用本文

导出引用
程军圣,刘贞涛,杨宇. 完全ASTFA方法及其在转子碰摩故障诊断中的应用[J]. 振动与冲击, 2018, 37(4): 165-169
Cheng Junsheng2,Liu Zhentao, Yang Yu. Complete adaptive and sparsest analysis and its application to rotor rubbing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(4): 165-169

参考文献

[1]于德介,陈淼峰,程军圣,等.基于EMD的奇异值熵在转子故障诊断中的应用[J].振动与冲击,2006,25(2): 24-27.
YU Dejie,Chen Miaofeng,Cheng Junsheng,et al. Fault Diagnosis Approach for rotor system Based On EMD Method And Singular Value Entropy[J].Journal Of Vibration And Shock.
[2]HUANG N E,SHEN Zheng,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrumfor nonlinear and non-stationary time series analysis[J].Proceeding of the Royal Society : A Mathematical Physical & Engineering Sciences,1998,454:903-995.
[3] WU Z H,HUANG N E. Ensemble empirical modedecomposition:A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1:1-41.
[4] HOU T Y,Shi Z Q. Adaptive Data Analysis via Sparse Time-frequency Representation[J].Advances in Adaptive Data Analysis,2011,3(1/2): 1-28.
[5]杨宇,李紫珠,何知义,等.基于ASTFA降噪和AKVPMCD的滚动轴承故障诊断[J].中国机械工程,2015,26(21): 2934-2940.
Yang Yu,Li Zizhu,He Zhiyi,et al. The Rolling Bearing Fault Diagnosis Method Based on ASTFA De-nosing and AKVPMCD[J]. China Mechanical Engineering,2015,26(21):2934-2940.
[6]  李宝庆,程军圣,彭延峰,等.基于ASTFA的广义解调方法及其应用[J].中国机械工程,2015,26(19): 2565-2570.
Li Baoqing,Cheng Junsheng,Peng Yanfeng,et al. Generalized Demodulation Method Based on ASTFA Method and Its Applications[J].China Mechanical Engineering,2015,26(19): 2565-2570.
[7] 杨斌,程军圣.基于自适应最稀疏时频分析的结构损伤检测方法[J].振动工程学报,2015,28(4): 640-649.
Yang Bin,Cheng Junsheng. The damage detection method base on the adaptive and sparsest time-frequency analysis,2015,28(4): 640-649.
[8]  HOU T Y,Shi Z Q. Data-driven Time-frequency Analysis[J].Applied and Computational Harmonic Analysis,2013,35(2): 284-308.
[9]  雷亚国,孔德同,李乃鹏,等.自适应总体平均经验模态分解分解及其在行星齿轮箱故障检测中的应用[J].机械工程学报,2014,50(3):64-70.
Lei Yagou,Kong Detong,Li Naipeng,et al.Adaptive Ensemble Empirical Mode Decomposition and Its Application toFault Detection of Planetary Gearboxes[J]. Journal of Mechanical Engineering,2014,50(3):64-70.
[10]程军圣,于德介,杨宇,等.EMD方法在转子局部碰摩故障诊断中的应用[J].振动、测试与诊断,2006,26(1):24-27.
Cheng Junsheng,Yu Dejie,Yang Yu. Application of EMD to Local Rub-impact Fault Diagnosis in Rotor Systems[J]. Journal of Vibration,Measurement &Diagnosis,2006,26(1): 24-27.

PDF(1987 KB)

Accesses

Citation

Detail

段落导航
相关文章

/