含功能梯度材料的周期管路振动特性研究

杜春阳 郁殿龙 温激鸿 刘江伟 贾鹏飞

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 170-176.

PDF(2592 KB)
PDF(2592 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 170-176.
论文

含功能梯度材料的周期管路振动特性研究

  • 杜春阳 郁殿龙 温激鸿 刘江伟 贾鹏飞
作者信息 +

Vibration property of periodic pipe with functionally graded materials

  • DU Chunyang  YU Dianlong  WEN Jihong  LIU Jiangwei  JIA Pengfei
Author information +
文章历史 +

摘要

以管路振动控制为目标,研究了含功能梯度材料的周期管路振动特性研究。利用有限元法计算功能梯度材料管路的带隙特性和应力分布情况。深入分析了影响功能梯度材料管路带隙特性的因素,包括单元内功能梯度材料管路长度,过渡函数性质,研究表明功能梯度材料能有效调节经典周期管路的带隙特性;同时功能梯度材料可以有效减弱周期管路不同材料界面处应力集中问题。研究结果为带隙调节和消除应力集中提供了一个新思路。

Abstract

In order to control the vibration of the pipe, the vibration propertiesof periodic beamwith functionally graded material(FGM)are investigated. Based on finite element method, the band gap of periodic pipeline with functionally graded materials was calculated.The properties oftunable band gap of FGM are discussed in detail, such as the length of pipe with functionally graded materials in cell unit, properties of transition function. Results show that a considerable stress concentration can be alleviated by the application of this FGM. The results reveal that the band gap of classic periodic pipeline can be improved as well as the stress concentration problem because of the functionally graded materials.The FGMs can be used to provide a new way for tunableband gap and eliminating the stress concentration.
 

关键词

功能梯度材料 / 周期管路 / 带隙 / 应力集中

Key words

Functionally graded materials / periodic pipe / Band gap / Stress concentration

引用本文

导出引用
杜春阳 郁殿龙 温激鸿 刘江伟 贾鹏飞. 含功能梯度材料的周期管路振动特性研究[J]. 振动与冲击, 2018, 37(4): 170-176
DU Chunyang YU Dianlong WEN Jihong LIU Jiangwei JIA Pengfei. Vibration property of periodic pipe with functionally graded materials[J]. Journal of Vibration and Shock, 2018, 37(4): 170-176

参考文献

[1] ShenHui-jie, Wen Ji-hong, Yu Dian-long, et al. Stability of fluid-conveying periodic shells on an elastic foundation with external loads[J]. Journal of Fluids and Structures, 2014, 46:134-148.
[2]  陈 刚,朱石坚.管壁不连续对管路结构振动传递的影响[J].海军工程大学学报,2004,16(2):40-43
     CHEN GANG, ZHU Shi-jian. Effects of discontinuity of pipe wall on transmission coefficient of pure torsion wave[J]. Journal of NAVAL UNIVERSITY OF ENGINEERING,2004,16(2):40-43
[3]  方丹群, 张斌, 孙家麒, 卢伟健. 噪声控制(上册)[M]. 北京: 科学出版社, 2013.4, 848-863
[4] 沈惠杰, 温激鸿, 郁殿龙,等.基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性[J].物理学报, 2009, 12(8):257-263.
     SHEN Hui-jie, WEN Jin-hong, YU Dian-long, et al. Flexural vibration property of periodic pipe system conveying fluid based on Timoshenko beam equation [J]. Acta Physics Sinica, 2009, 12(8):257-263.
[5] A. Shahba, R.Attarnejad, M.TavanaieMarvi, S.Hajilar. Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions[J], Composites Part B Engineering, 2011, 42(4):801-808.
[6] ArkadiBerezovski, JuriEngelbrecht, G.A.Maugin. Numerical simulation of two-dimensional wave propagation in functionally graded materials[J]. European Journal of Mechanics A/Solids, 2003, 22(2):257-265.
[7]  Hugh A. Bruck. A one-dimensional model for designing functionally graded materials to manage stress waves[J]. International Journal of Solids & Structures, 2000, 37(44):6383-6395.
[8] 吴晓,罗佑新.用Timoshenko梁修正理论研究功能梯度材料梁的动力响应[J].动力与冲击, 2011, 30(10):245-248.
     WU Xiao, LUO You-xin. Dynamic responses of beam with functionally graded materials with Timoshenko beam correction theory[J]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(10): 245-248.
[9]  YANGQuanQuan, GAO CunFa*&CHEN WenTao. Stress concentration in a finite functionally graded material plate[J]. Science China Physics Mechanics & Astronomy, 2012, 55(7):1263-1271.
[10] Shen Huijie, Wen  Jihong, Michael P.Païdoussis,      etal. Control of sound and vibration for cylindrical shells by utilizing a periodic structure of functionally graded material[J]. Physics Letters A, 2012, 376(45):3351-3358.
[11]  WuMei-Ling, Wu Liang-Yu, Yang Wen-Pei,etal. Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials[J]. Smart Materials & Structures, 2009, 18(11):269-273.
[12] A. Chakraborty, S. Gopalakrishnan. A spectrally formulated finite element for wave propagation analysis in functionally graded beams[J]. International Journal of Solids and Structures, 2003, 40(10):2421-2448.
[13] AhamadShahba, SundaramoorthyRajasekaran. Free vibration and stability of taperes Euler-Bernouli beams made of axially functionally graded materials[J]. Applied Mathematical Modelling, 2012, 36(7):3094-3111.
[14] S Kukla, J Rychlewska. Free vibration analysis of functionally graded beams[J]. Journal of Applied Mathematics & Computational Mechanics, 2013, 12(2):39-44.
[15] 沈惠杰. 基于带隙理论的管路系统振动特性研究[D]. 长沙:国防科学技术大学,2009.
[16] 张亚峰. 声子晶体管路减振降噪研究[D]. 长沙:国防科学技术大学,2014.
[17] 中仿科技公司. COMSOL Multiphysics有限元法多物理场建模与分析[M]. 北京:人民交通出版社,2007.
[18] Zhang Hao, Wen Jihong, Xiao Yong, etal. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted[J]. Journal of Sound and Vibration, 2015, 343:104-120.
[19]  Zhang Hao, Xiao Yong, Wen Jihong, etal. Ultra-thin smart acoustic metasurface for low-frequency sound insulation[J]. Applied Physics Letters, 2016, 108(14):1734.
[20]  J Mei, G Ma, M Yang,etal. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications, 2012, 3(2):132-136.
[21]  CJNaify, CM Chang, G Mcknight, etal. Membrane-type matamaterials: Transmission loss of multi-celled arrays[J]. Journal of Applied Physics, 2011, 109(10):104902-104902-9.

PDF(2592 KB)

414

Accesses

0

Citation

Detail

段落导航
相关文章

/