热环境下长宽比对L型折板统计能量分析参数的影响研究

陈强1,张鹏1,李彦斌1,吴邵庆1,2,费庆国1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 191-196.

PDF(1371 KB)
PDF(1371 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 191-196.
论文

热环境下长宽比对L型折板统计能量分析参数的影响研究

  • 陈强1,张鹏1,李彦斌1,吴邵庆1,2,费庆国1,2
作者信息 +

Effect of aspect ratio on statistical energy analysis parameters of L-shaped folded plate under thermal environment

  • CHEN Qiang1, ZHANG Peng1, LI Yan-bin1, WU Shao-qing1, 2, FEI Qing-guo1, 2
Author information +
文章历史 +

摘要

基于有限元法和计及热效应的功率输入法,以各边简支的L型折板为研究对象,研究常温和高温环境下长宽比对其统计能量分析参数影响。首先开展雨流载荷作用下的仿真分析验证统计能量参数获取方法的准确性,然后开展高温环境下长宽比对模态密度、内损耗因子和耦合损耗因子的影响研究。结果表明:常温环境下长宽比对结构的内损耗因子及耦合损耗因子影响不大;高温环境下长宽比的增加使得结构的耦合损耗因子呈现出先升高后降低的趋势,但对内损耗因子影响不大;两种环境下模态密度均随长宽比的增加而增加。

Abstract

With the combination of the finite element method (FEM) and the power injection method (PIM) considering thermal effect, a simply-supported L-shaped folded plate is taken as object of research in order to study the influence of aspect ratio on the statistical energy analysis parameters under normal and thermal environments. Firstly, numerical analysis under rain on the roof excitation is studied to verify the accuracy of the proposed method. Then, the effect of aspect ratio on the modal density, the internal loss factor and the coupling loss factor under normal and thermal environments is studied. Results show that the aspect ratio of plate has minor effect on the internal loss factor and the coupling loss factor of the structure under normal environment. Under thermal environment, the coupling loss factor is firstly increase and then decrease with the increasing of the aspect ratio of plate. However, the increase of the aspect ratio of plate has little effect on the internal losing factor. The modal density increases with the aspect ratio of plate in both normal and thermal environments.

关键词

L型折板 / 统计能量分析参数 / 长宽比 / 热环境 / 耦合损耗因子

Key words

L-shaped folded plate / statistical energy analysis parameters / aspect ratio / thermal environment / coupling loss factor

引用本文

导出引用
陈强1,张鹏1,李彦斌1,吴邵庆1,2,费庆国1,2. 热环境下长宽比对L型折板统计能量分析参数的影响研究[J]. 振动与冲击, 2018, 37(4): 191-196
CHEN Qiang1, ZHANG Peng1, LI Yan-bin1, WU Shao-qing1, 2, FEI Qing-guo1, 2. Effect of aspect ratio on statistical energy analysis parameters of L-shaped folded plate under thermal environment[J]. Journal of Vibration and Shock, 2018, 37(4): 191-196

参考文献

[1] Blevins R, Holehouse I, Wentz K. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels[J]. Journal of Aircraft, 1993, 30(6):971-978.
[2] Swanson A D, Coghlan S C, Pratt D M, et al. Hypersonic vehicle thermal test challenges[R]. AIAA-2007-1670
[3] 李彦斌, 张鹏, 吴邵庆, 等. 复合材料加筋板计及热效应的声-固耦合分析[J]. 振动工程学报, 2015, 28(4):531-540.
LI Yanbin, ZHANG Peng, WU Shaoqing, et al. Structural- acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering, 2015, 28(4):531-540.
[4] Jeyaraj P, Ganesan N, Padmanabhan C. Vibration and acoustic response of an isotropic plate in a thermal environment[J]. Journal of Vibration and Acoustics, 2008, 130(5):301-306.
[5] Lyon R H, DeJong R G. Statistical energy analysis of dynamical systems: theory and applications[M]. Massachusetts: MIT Press, 1975.
[6] 张婧雯, 孟光, 游进, 等. 基于统计能量法的声场-结构耦合模型高频振动隔振分析[J]. 振动与冲击, 2009, 28(12):19-22.
ZHANG Jingwen, MENG Guang, YOU Jin, et al. Analysis on high frequency vibration isolation of coupled sound cavity-structure model based on statistical energy method[J]. Journal of Vibration and Shock, 2009, 28(12):19-22.
[7] Lima W D, Ravindran A. Prediction of the cabin noise of business jet using statistical energy analysis[J]. Journal of the Acoustical Society of America, 2010, 127(3):311-2.
[8] Ji X, Chin C S. Analysis of Acoustic Models and Statistical Energy Analysis with Direct Field for Machinery Room on Offshore Platform[J]. Acta Acustica United with Acustica, 2015, 101(6):1234-1244.
[9] Swaminathan K, Naveenkumar D T, Zenkour A M, et al. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review[J]. Composite Structures, 2015, 120(120):10-31.
[10] Pankaj A C, Sridhar S, Murigendrappa S M. A compareson of different methods for determination of coupling factor and velocity response of coupled plates[J]. Journal of Vibroengineering, 2013, 15(4):1885-1897.
[11] 江民圣, 牛军川, 郑建华, 等. L 型耦合板结构能量传递系数特性的研究[J]. 振动与冲击, 2015, 34(17):131-136.
JIANG Mingsheng, NIU Junchuan, ZHENG Jianhua, et al. Energy transfer coefficients’ features of L-shaped coupled plates[J]. Journal of Vibration and Shock, 2015, 34(17):131-136.
[12] Bot A L, Cotoni V. Validity diagrams of statistical energy analysis[J]. Journal of Sound and Vibration, 2010, 329(2):221-235.
[13] 杨雄伟, 李跃明, 闫桂荣. 考虑材料物性热效应飞行器声振耦合动态特性分析[J]. 固体力学学报, 2010, 31(S1):134-142.
YANG Xiongwei, LI Yueming, YAN Guirong. Vibro-acoustic dynamic analysis of aircraft with temperature-dependent material property [J]. Chinese Journal of Solid Mechanics, 2010: 31(S1):134-142.
[14] 耿谦, 李跃明, 杨雄伟. 热应力作用下结构声-振耦合响应数值分析[J]. 计算力学学报, 2012, 29(1):99-104.
GENG Qian, LI Yueming, YANG Xiongwei. Vibro-acoustic numerical analysis of thermally stressed aircraft structure [J]. Chinese Journal of Computational Mechanics, 2012, 29(1):99-104.
[15] 孙树森. 基于统计能量法的潜射导弹振动噪声分析研究[D]. 哈尔滨工业大学, 2011.
SUN Shusen. Vibration and noise analysis for submarine-launched missile based on SEA [D]. Harbin Institute of Technology, 2011.
[16] Ichchou M N, Hiverniau B, Troclet B. Equivalent ‘rain on the roof’ loads for random spatially correlated excitations in the mid–high frequency range[J]. Journal of Sound and Vibration, 2009, 322(4–5):926-940.

PDF(1371 KB)

351

Accesses

0

Citation

Detail

段落导航
相关文章

/