一类非线性相对转动系统的动力学行为及其机理分析

韩清振 1,何仁 1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 49-54.

PDF(2396 KB)
PDF(2396 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 49-54.
论文

一类非线性相对转动系统的动力学行为及其机理分析

  • 韩清振 1 ,何仁 1
作者信息 +

Dynamic behaviors and mechanisms analysis of nonlinear relative rotation system

  •   HAN Qingzhen 1  HE Ren 1
Author information +
文章历史 +

摘要

本文研究了一类具有非线性刚度的相对转动系统的动力学行为。应用Routh-Hurwitz稳定性理论判断了相对转动系统平衡点的稳定性。应用分岔理论研究了平衡点失稳时的分岔行为,推导了平衡点产生fold分岔的条件,进而通过仿真得到了平衡点在双参数平面上的分岔集及单参数分岔曲线,研究了不同参数区域内平衡点的个数以及稳定性问题。应用分岔图研究了相对转动系统随平方非线性刚度系数及激励角频率变化的全局动力学行为,获得了周期三以及混沌等动力学行为。通过调整平方非线性刚度系数得到了慢变外激励下相对转动系统中的对称式和不对称式fold/fold簇发行为。

Abstract

The dynamic behaviors of nonlinear relative rotation system with nonlinear stiffness is studied. The torque perturbation is made as control parameter, and the equilibrium’s stability of the torsional vibration system is judged by the Routh-Hurwitz criterion. The bifurcation theory is used to analysis the bifurcation behaviors of the equilibrium, and the condition of Fold bifurcation of the equilibrium is derived. The bifurcation set of the equilibrium on the parameter plane is obtained by simulation, and the stability of equilibrium in different parameter regions are studied. The global dynamic behaviors of torsional vibration system are studied by the bifurcation map and period three motion and chaotic motion are obtained. Symmetric and asymmetric fold/fold burstings are obtained by adjusting the quadratic nonlinear stiffness coefficient.

关键词

相对转动 / 非线性 / 分岔 / 平衡点

Key words

relative rotation / nonlinear / bifurcation / equilibrium

引用本文

导出引用
韩清振 1,何仁 1. 一类非线性相对转动系统的动力学行为及其机理分析[J]. 振动与冲击, 2018, 37(4): 49-54
HAN Qingzhen 1 HE Ren 1. Dynamic behaviors and mechanisms analysis of nonlinear relative rotation system[J]. Journal of Vibration and Shock, 2018, 37(4): 49-54

参考文献

[1] VERICHEV N N. Chaotic torsional vibration of imbalanced shaft driven by a limited power supply[J]. Journal of Sound & Vibration, 2012, 331(2):384–393.
 [2] BULUT G. Dynamic stability analysis of torsional vibrations of a shaft system connected by a Hooke’s joint through a continuous system model[J]. Journal of Sound & Vibration, 2014, 333(16):3691-3701.
 [3] XIA Minglu, SUN Qingping. Jump phenomena of rotational angle and temperature of NiTi wire in nonlinear torsional vibration[J]. International Journal of Solids & Structures, 2014, 56-57:220-234.
 [4] 张立军, 司杨, 余卓平. 燃料电池轿车动力传动系统非线性动态特性仿真分析[J]. 机械工程学报, 2009, 45 (2): 62-67.
     ZHANG Lijun, SI Yang, YU Zhuoping. Numerical investigation into nonlinear dynamical characteristics of fuel cell vehicle powertrain system[J]. Journal of mechanical engineering, 2009, 45(2): 62-67.
 [5] 时培明, 夏克伟, 刘彬,等. 含间隙多自由度轧机传动系统非线性扭振动力特性[J]. 机械工程学报, 2012, 48(17):57-64.
     SHI Peiming, XIA Kewei, LIU Bin, et al. Dynamics behaviors of rolling mill’s nonlinear torsional vibration of multi-degree-of-freedom main drive system with clearance[J]. Journal of mechanical engineering, 2012, 48(17):57-64.
 [6] Chen Xing, Hu Jibin, Peng Zengxiong, et al. Nonlinear torsional vibration characteristics of PMSM for HEV considering electromagnetic excitation[J]. International Journal of Applied Electromagnetics & Mechanics, 2015, 49(1):9-21.
[7] 侯东晓, 刘彬, 时培明,等. 两自由度轧机非线性扭振系统的振动特性及失稳研究[J]. 振动与冲击, 2012, 31(3):32-36.
 HOU Dongxiao, LIU Bin, SHI Peiming, et al. Vibration characteristic of 2 DOF nonlinear torsional vibration system of rolling mill and its conditions of instability [J]. Journal of vibration and shock, 2012, 31(3):32-36.
[8] 尚慧琳,李伟阳,韩元波. 一类相对转动系统的复杂运动及时滞速度反馈控制[J]. 振动与冲击, 2015, 34(12): 127-132.
SHANG Hui-lin LI Wei-yang HAN Yuan-bo.  The complex dynamics of a relative rotation system and its control by delay velocity feedback. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(12): 127-132.
[9] Izhikevich E M. Neural excitability, spiking, and bursting[J]. International Journal of Bifurcation and chaos, 2000, 10: 1171-1266.
[10] 张晓芳, 韩清振, 陈小可,等. 慢变控制下Chen系统的复杂行为及其机理[J]. 物理学报, 2014, 63(18): 180503-180503
     ZHANG Xiaofang, HAN Qingzhen, Chen Xiaoke, et al. Complicated behavior and mechanism of Chen system with slowly variable control[J]. Acta Phys Sin, 2014, 63(18): 180503-180503.
[11] BI Qinsheng, ZHANG Zhengdi. Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales[J]. Physics Letters A, 2011, 375(375):1183-1190.
[12] Han Xiujing, BI Qinsheng. Bursting oscillations in Duffing’s equation with slowly changing external forcing[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(10):4146-4152.
[13] 时培明,李纪召,刘彬,韩东颖. 一类准周期参激非线性扭振系统的周期簇发[J].振动与冲击, 2012, 31(4): 100-104.
SHI Pei-ming;LI Ji-zhao; LIU Bin; HAN Dong-ying. Periodic bursting of a nonlinear torsional vibration system under quasic-periodic parametric excitation[J]. Journal of vibration and shock, 2012, 31(4): 100-104.

PDF(2396 KB)

366

Accesses

0

Citation

Detail

段落导航
相关文章

/