双腔固液混合介质隔振系统变刚度控制试验研究

李方硕,陈前,周俊辉

振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 88-93.

PDF(1063 KB)
PDF(1063 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (4) : 88-93.
论文

双腔固液混合介质隔振系统变刚度控制试验研究

  • 李方硕,陈前,周俊辉
作者信息 +

Experimental study on the variable-stiffness control of dual-chamber solid and liquid mixture vibration isolator

  • LI Fang-shuo,CHEN Qian,ZHOU Jun-hui
Author information +
文章历史 +

摘要

双腔固液混合介质隔振器可以通过改变联通管道的节流面积调节隔振系统的动力学特性。设计了一个主动控制阀组,通过控制四个分支油路的通断可以实现对于整个油路节流开度的近似连续调节。对于不同节流开度下的隔振系统的动力学特性进行了实验研究,结果表明,通过改变控制阀组的流通特性,可以有效控制隔振器的刚度和阻尼特性。介绍了FEBC(frequency estimation based control)控制策略基本原理,并用不同方法对于振动信号基频的实时辨识进行了对比研究。最后基于FEBC控制策略,对于双腔隔振系统的半主动控制进行了实验研究,结果表明,通过变刚度半主动控制,可以有效的规避共振峰值,提高隔振系统的性能。

Abstract

The dynamic property of dual-chamber solid and liquid mixture vibration isolator can be easily adjusted by changing the section area of the oil tube which connects the two chambers. An active group valve containing four branches was designed to control the flow of oil flowing between the two chambers. Dynamic experiments for the novel isolator with different apertures were performed to verify the efficiency of the active group valve. The experimental result turned out that the stiffness and damping properties of the novel isolator could be effectively adjusted by actively control the group valve. Then, the FEBC strategy combing with various methods of identifying the base frequency of the vibrating signals were introduced. At last the semi-active control of the target isolator based on FEBC strategy was carried out experimentally. The test result showed that the semi-active system with stiffness-varying property did well in avoiding the resonance response and improving the isolation performance.
 

关键词

固液混合介质 / 隔振 / 变刚度 / 半主动 / 双腔

Key words

 solid and liquid mixture / vibration isolation / variable stiffness / semi-active / dual-chamber

引用本文

导出引用
李方硕,陈前,周俊辉. 双腔固液混合介质隔振系统变刚度控制试验研究[J]. 振动与冲击, 2018, 37(4): 88-93
LI Fang-shuo,CHEN Qian,ZHOU Jun-hui. Experimental study on the variable-stiffness control of dual-chamber solid and liquid mixture vibration isolator[J]. Journal of Vibration and Shock, 2018, 37(4): 88-93

参考文献

[1] Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration. 2008, 314(3-5): 371-452.
[2] Marzbani H, Jazar R N, Fard M. Hydraulic engine mounts: a survey[J]. Journal of Vibration and Control. 2014, 20(10): 1439-1463.
[3] 余慕春,陈前,高雪等. 分子弹簧的隔振机理与力学性能研究[J]. 力学学报. 2014(04): 553-560.
Yu Muchun, Chen Qian, Gao Xue, et al. Investigation of molecular spring on vibrations isolation mechanism and mechanical properties[J].  Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(04): 553-560.
[4] Butsuen T. The design of semi-active suspensions for automotive vehicles[D]. Cambridge: Massachusetts Institute of Technology, 1989.
[5] 任勇生,周建鹏. 汽车半主动悬架技术研究综述[J]. 振动与冲击. 2006, 25(03): 162-165.
Ren Yongsheng, Zhou Jianpeng. Vehicle semi-active suspension techniques and its applications. Zhendong Yu Chongji/journal of Vibration & Shock, 2006. 25(3): 162-165.
[6] Rajamani R. Vehicle Dynamics and Control[M]. Springer US, 2011.
[7] 赵玉壮. 油气悬架非线性特性及其阻尼控制策略研究[D]. 北京: 北京理工大学, 2011.
Zhao yuzhu. Research on Nonlinearity and Damping Control Strategy[D]. Beijing: Beijing Institute of Technology, 2011.
[8] 刘会兵,廖昌荣,李锐等. 磁流变液悬置用于发动机隔振模糊控制[J]. 振动、测试与诊断. 2011, 31(2): 180-184.
Liu Huibing, Liao Changrong, Li Rui, et al. Application of Magneto-Rheological Fluid Mount to Fuzzy Control of Engine Vibration Isolation. Journal of Vibration Measurement & Diagnosis, 2011, 31(2): 180-184.
[9] 曾喆昭. 信号与线性系统[M]. 北京: 清华大学出版社, 2007.
Zeng Zhezhao. Signal and linear system[M]. Beijing: Tsinghua University Press, 2007.
[10] Lozoya-Santos J D J, Morales-Menéndez R, Sename O, et al. Control Strategies for an Automotive Suspension with a MR Damper[J]. Menendez. 2011, 18(1): 1820-1825.
[11] Acocella G, Liguori C, Paciello V, et al. Real-time detection of resonant frequency in semi-active suspension systems[C]// Binjiang, Hangzhou, China: 2011: 485-490.
[12] Choi Y T, Wereley N M, Hiemenz G J. Frequency Shaped Semi-Active Control for Magnetorheological Fluid-Based Vibration Control Systems[C]// Snowbird, UT, USA: 2013.
 

PDF(1063 KB)

Accesses

Citation

Detail

段落导航
相关文章

/