在传统M-B接触模型的基础上,利用三维分形理论,推导三维分形结合面的接触模型,并建立了三维分形接触热导模型。通过仿真分析揭示了法向载荷、分形维数、分形尺度参数、材料特性参数及各参数的耦合对接触热导的影响。仿真结果表明:接触热导与法向载荷呈正相关,当 时,两者存在非线性关系,当 时,两者趋于线性关系;当 时,接触热导随分形维数的增大而增大,当 时,接触热导随分形维数的增大而减小;接触热导与分形尺度参数呈负相关,与材料特性参数呈正相关;并得出上述参数两两耦合对接触热导的影响。
Abstract
On the basis of the traditional M-B contact model, adopting the 3-D fractal theory, the contact model of a 3-D fractal interface was derived and the 3-D fractal thermal contact conductance model was established. The effects of normal load, fractal dimension, fractal scale parameters, material characteristic parameters and couplings between any two of all these parameters on thermal contact conductance were revealed with simulation analyses. The results showed that the thermal contact conductance is positively correlated to normal load; when , There is a nonlinear relationship between them; when , they tend to have a linear relationship; when , thermal contact conductance increases with increase in fractal dimension; when , it decreases with increase in fractal dimension; thermal contact conductance is negatively correlated to fractal scale parameters, and it is positively correlated to material characteristic parameters; effects of couplings between any two of all these parameters on thermal contact conductance are also gained.
Key words
fractal theory /
thermal contact resistance /
thermal contact conductance model /
fractal parameter /
material characteristic parameter /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林黎柏. 表面粗糙度微观接触力学的研究[D]. 台湾台南:国立成功大学,2006.
Lin Libo. The study on micro contact mechanics of surface roughness[D]. Tainan: National Cheng Kung University, 2006.
[2] Cong P Z, Zhang X, Fujii M. Estimation of thermal contact resistance using ultrasonic waves[J]. International Journal of Thermophysics, 2006, 27(1): 171~183.
[3] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. ASME: Journal of Tribology, 1990, 112(2): 205~216.
[4] 顾慰兰,杨燕生. 温度对接触热阻的影响[J]. 南京航空航天大学学报,1994,26(3):342~350.
Gu Weilan, Yan Yansheng. The influence of temperature on contact resistance of metallic surfaces temperature[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1994, 26(3): 342~350.
[5] 王宗仁,杨军,陈宇,等. 载荷对高温合金GH4169/K417间接触热导影响[J]. 稀有金属材料与工程,2013,42(5):1033~1037.
Wan Zongren, Yang Jun, Chen Yu, et al. Effect of interface pressure on thermal contact conductance across GH4169/K417 interface[J]. Rare Metal Materials and Engineering, 2013, 42(5): 1033~1037.
[6] 黄明辉,张云湘,胡仕诚. 载荷对接触热导的影响的实验研究[J]. 有色矿冶,2003,19(6):34~36.
Huang Minghui, Zhang Yunxiang, Hu Shicheng. Research of loading effect on thermal contact conductance by using experimental method[J]. Non-Ferrous Mining and Metallurgy, 2003, 19(6): 34~36.
[7] 马丽娜. 弹塑性接触变形下的接触热导分形模型[J]. 太原科技大学学报,2014,35(6):438~442.
Ma Lina. Surface fractal model with thermal contact resistance of elastic-plastic deformation mechanism[J]. Journal of Taiyuan University of Science and Technology, 2014, 35(6): 438~442.
[8] 李小彭,王雪,运海萌,等. 三维分形固定结合面法向接触刚度的研究[J]. 华南理工大学学报,2016,44(1):114~122.
Li Xiaopeng, Wang Xue, Yun Haimeng, et al. Investigation into Normal Contact Stiffness of Fixed Joint Surface with Three-Dimensional Fractal[J]. Journal of South China University of Technology, 2016, 44(1): 114~122.
[9] 吴阳,张学良,温淑花,等. 机床固定结合面接触热导三维分形模型[J]. 太原科技大学学报,2015,36(5):368~374.
Wu Yang, Zhang Xueliang, Wen Shuhua, et al. Three-dimensional fractal model combined with surface thermal contact conductance of machine tool[J]. Journal of Taiyuan University of Science and Technology, 2015, 36(5): 368~374.
[10] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617~3624.
[11] Johnson K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 1985.
[12] 李小彭,赵光辉,梁亚敏. 两圆柱体结合面法向刚度分形预估模型及其仿真分析[J]. 农业机械学报,2013,44(10):277~281.
Li Xiaopeng, Zhao Guanghui, Liang Yamin. Fractal model and simulation of normal contact stiffness between two cylinders’ joint surface[J]. Journal of Agricultural Machinery, 2013, 44(10): 277~281.
[13] WANG S, KOMVOPOULOS K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I——Elastic contact and heat transfer analysis[J]. Journal of Tribology, 1994, 116(4): 812-822.
[14] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. ASME: Journal of Tribology, 1991, 113(1): 1~11.
[15] Majumdar A, Tien C L. Fractal network model for contact conductance[J]. ASME: Journal of Heat Transfer, 1991, 113(3): 516~525.
[16] 龚钊,杨春信. 接触热阻理论模型的简化[J]. 工程热物理学报,2007,28(5):850~852.
Gong Zhao, Yang Chunxin. The simplification of the thermal contact conductance model[J]. Journal of Engineering Thermophysics, 2007, 28(5): 850~852.
[17] 刘正伦. 具可变形貌参数之微接触模型理论研究[D]. 台湾台南:国立成功大学,2006.
Liu Zhenglun. The theoretical study for microcontact model with variable topography parameters[D]. Tainan: National Cheng Kung University, 2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}