基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究

张挺1,谭志新1,张恒1,范佳铭2,杨志强1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 148-154.

PDF(852 KB)
PDF(852 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 148-154.
论文

基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究

  • 张挺1,谭志新1,张恒1,范佳铭2,杨志强1
作者信息 +

Axial coupled response characteristics of a fluid-conveying pipeline based on split-coefficient matrix finite difference method

  • ZHANG Ting1, TAN Zhixin1, ZHANG Heng1, FAN Chiaming2, YANG Zhiqiang1
Author information +
文章历史 +

摘要

利用分离系数矩阵差分法配合隐式欧拉法,针对输流直管轴向振动流固耦合-四方程模型进行数值仿真计算,研究在水锤激励下,输流直管耦合轴向振动响应特性。分离系数矩阵差分法避开特征线法复杂的时间或空间插值,能根据波的传播方向选择适当的差分公式进行计算,简单可行且稳定性较好。将该数值模式的计算结果与前人的数值结果和经典水锤理论对比,吻合良好,表明其具有较高的适应性和准确性。对比分析了仅考虑泊松耦合时和同时考虑泊松与连接两种耦合时,流体流速、管内压强、轴向管道振动速度以及管壁应力四个特征参数的响应特性。结果表明,两种耦合作用对管道轴向振动特性的影响不容忽视,泊松耦合主要影响振动响应幅值,而连接耦合不仅会影响振动幅值,还会影响振动频率。

Abstract

To study axial coupled vibration response of a fluid-conveying pipeline excited by water hammer, the split-coefficient matrix finite difference method (SCM-FDM) combined with the implicit Euler method (IEM) was proposed to do numerical simulation for the pipeline 4-quation dynamic model with fluid-structure interaction. The proposed SCM-FDM was simple, easy and stable to implement since the appropriate difference formulas were selected according to the direction of wave propagation. Compared with the method of characteristics lines (MOCL), SCM-FDM avoids time-consuming calculations of spatial or temporal interpolations. To verify the applicability and accuracy of SCM-FDM, its computation results were compared with other authors’ numerical results and those of the water hammer theory, they agreed well each other. Furthermore, the effects of fluid velocity, fluid pressure, axial pipe vibration velocity and pipe-wall stress on the system’s vibration response features were analyzed in two cases including only considering Poisson coupling and considering both Poisson coupling and connection one. The results indicated that the effects of both two couplings on the axial vibration features of the fluid-conveying pipeline can’t be ignored; Poisson-coupling mainly affects amplitudes of vibration response, while the connection coupling affects both amplitude and frequency of vibration response.

关键词

分离系数矩阵差分法 / 水锤 / 流固耦合 / 振动响应 / 数值模拟

Key words

split-coefficient matrix finite difference method / water hammer / fluid-structure interaction / vibration response / numerical simulation

引用本文

导出引用
张挺1,谭志新1,张恒1,范佳铭2,杨志强1. 基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究[J]. 振动与冲击, 2018, 37(5): 148-154
ZHANG Ting1, TAN Zhixin1, ZHANG Heng1, FAN Chiaming2, YANG Zhiqiang1. Axial coupled response characteristics of a fluid-conveying pipeline based on split-coefficient matrix finite difference method[J]. Journal of Vibration and Shock, 2018, 37(5): 148-154

参考文献

[1] Otwell R S. The effect of elbow restraint on pressure transients[D]. Michigan State University. Dept of Civil and Sanitary Engineering, 1984.
[2] Wiggert D C, Tijsseling A S. Fluid transients and fluid-structure interaction in flexible liquid-filled piping[J]. Applied Mechanics Reviews, 2001, 54(5): 455-481.
[3] 任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003, 33(3): 313-324.
REN Jian-ting , JIANG Jie-sheng. Advances and trends on vibration of pipes conveying fluid[J]. Advances in Mechanics, 2003, 33(3): 313-324.
[4] 范士娟, 杨超. 输水管道流固耦合振动数值计算[J]. 噪声与振动控制, 2010, 30(6): 43-46.
FAN Shi-juan,YANG Chao. Numerical calculation of fluid-structure coupling vibration of a water pipeline[J]. Noise and Vibration Control, 2010, 30(6): 43-46.
[5] 席志德, 马建中, 孙磊. 考虑流-固耦合效应的空间管道水锤方法研究[J]. 核动力工程, 2013 34(2): 1-4.
XI Zhi-de, MA Jian-zhong, SUN Lei. Method to study water hammer with fluid-structure interaction in spatial pipe[J]. Nuclear Power Engineering, 2013 34(2): 1-4.
[6] 姬贺炯,白长青,韩省亮.输流管耦合动力学特性分析[J].噪声与振动控制,2013,33( 5) : 10-14.
JI He-jiong, BAI Chang-qing, HAN Sheng-liang. Analysis of dynamic characteristics of fluid-structure interaction in fluid-filled pipes [J]. Noise and Vibration Control,2013,33( 5) : 10-14.
[7] 叶红玲, 邵沛泽, 陈宁, 等. 流固耦合输流管系统的动力学分析及参数影响[J]. 北京工业大学学报, 2015, 41(2): 167-173.
YE Hong-ling, SHAO Pei-ze, CHEN Ning, et al. Dynamic analysis and parameters' influences on fluid-structure interaction in a fluid-filled pipes system[J]. Journal of Beijing University of Technology, 2015, 41(2): 167-173.
[8] Tijsseling A S, Lavooij C S W. Waterhammer with fluid-structure interaction[J]. Applied Scientific Research, 1990, 47(3): 273-285.
[9] Lavooij C S W, Tijsseling A S. Fluid-structure interaction in liquid-filled piping systems[J]. Journal of Fluids and Structures, 1991, 5(5): 573-595.
[10] 杨超, 范士娟. 管材参数对输液管流固耦合振动的影响[J]. 振动与冲击, 2011, 30(7): 210-213.
YANG Chao,FAN Shi-juan. Influence of pipe parameters on fluid-structure coupled vibration of a fluid-conveying pipe[J]. Journal of Vibration and Shock, 2011, 30(7): 210-213.
[11] 孙玉东, 王锁泉, 刘忠族,等. 液-管耦合空间管路系统振动噪声的有限元分析方法[J]. 振动工程学报, 2005, 18(2):149-154.
SUN Yu-dong, WANG Suo-quan, LIU Zhong-zu,et al.Unified finite element method for analyzing vibration and noisein 3-D piping system with liquid-pipe coupling[J]. Journal of Vibration Engineering, 2005, 18(2):149-154.
[12] Sreejith B, Jayaraj K, Ganesan N, et al. Finite element analysis of fluid–structure interaction in pipeline systems[J]. Nuclear Engineering and Design, 2004, 227(3): 313-322.
[13] Wang Z M, Tan S K. Vibration and pressure fluctuation in a flexible hydraulic power systemon an aircraft[J]. Computers and Fluids, 1998, 27(1): 1-9.
[14] Ahmadi A, Keramat A. Investigation of fluid–structure interaction with various types of junction coupling[J]. Journal of Fluids and Structures, 2010, 26(7): 1123-1141.
[15] Chen Y G, Price W G. Numerical simulation of liquid sloshing in a partially filled container with inclusion of compressibility effects[J]. Physics of Fluids (1994-present), 2009, 21(11): 112-105.
[16] Ouyang L B, Aziz K. Transient gas–liquid two-phase flow in pipes with radial influx or efflux[J]. Journal of Petroleum Science and Engineering, 2001, 30(3): 167-179.
[17] Lu D M, Simpson H C, Gilchrist A. The application of split-coefficient matrix method to transient two phase flows[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 1996, 6(3): 63-76.
[18] Tijsseling A S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration[J]. Journal of Fluids and Structures, 2003, 18(2): 179-196.

PDF(852 KB)

365

Accesses

0

Citation

Detail

段落导航
相关文章

/