冲击缓冲用磁流变阻尼器的响应特性模型与实验研究

李赵春1,周冰倩1,顾权1,王炅2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 163-168.

PDF(1298 KB)
PDF(1298 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 163-168.
论文

冲击缓冲用磁流变阻尼器的响应特性模型与实验研究

  • 李赵春1 ,周冰倩1,顾权1,王炅2
作者信息 +

Modeling and tests for response features of MR damper as a shock isolation device

  •   LI Zhao-chun 1,   ZHOU Bing-qian1,  GU Quan1,  WANG Jiong2
Author information +
文章历史 +

摘要

针对冲击缓冲用磁流变阻尼器对快速性的要求,对其响应特性进行理论建模与实验研究。根据磁流变线圈电磁电路,建立了磁感应强度响应特性理论模型,并用频率测定方法确定了响应时间常数。通过实验测试了不同电流条件下磁流变阻尼器的磁感应强度阶跃响应,结果表明不同幅值的激励电流对磁感应强度的响应并无明显影响,获得上升阶跃平均响应时间常数为4.9ms,下降阶跃平均响应时间常数为2.8ms。建立了剪切屈服应力的二阶响应模型,并利用冲击实验台测试了冲击载荷下磁流变阻尼器剪切屈服应力的阶跃响应,通过模型拟合获得响应时间常数为4.8ms。实验结果表明剪切屈服应力二阶模型能较好地吻合实验响应曲线,说明该模型能够较准确地描述冲击条件下磁流变阻尼器的响应特性。

Abstract

Response features of a magnetorheological (MR) damper as a shock isolation device with fast response requirement were modeled and tested. A theoretical model for response features of magnetic flux density was established according to the electromagnetic circuit of the MR damper’s coil. The response time constant of the model was determined with the frequency measurement method. Step responses of the magnetic flux density of the MR damper under different currents were tested. The results showed that currents with different amplitudes have no effect on response of magnetic flux density, the average response time constants are 4.9ms (rising step) and 2.8ms (drop step). Furthermore, a second order response model for shear yield stress was established. The step response of the shear yield stress of the MR damper under impact loading was measured utilizing an impact test rig. It was shown that the response time constant obtained with model fitting is 4.8ms; the proposed second order model for shear yield stress agrees well  with test data, so this model can effectively describe response features of the MR damper under impact loading.

关键词

磁流变阻尼器 / 响应特性 / 冲击缓冲 / 响应模型

Key words

magnetorheological (MR) damper / response features / shock isolation / response model

引用本文

导出引用
李赵春1,周冰倩1,顾权1,王炅2. 冲击缓冲用磁流变阻尼器的响应特性模型与实验研究[J]. 振动与冲击, 2018, 37(5): 163-168
LI Zhao-chun 1, ZHOU Bing-qian1, GU Quan1, WANG Jiong2. Modeling and tests for response features of MR damper as a shock isolation device[J]. Journal of Vibration and Shock, 2018, 37(5): 163-168

参考文献

[1] Carlson J D. What makes a good MR fluid? [J]. Journal of Intelligent Material Systems and Structures, 2003, 13(7-8): 431-435.
[2] Sahin H, Gordaninejad F, Wang X J, et al. Response time of magnetorheological fluids and magnetorheological valves under various flow conditions[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(9): 949-957.
[3] Choi Y T, Wereley N M. Drop-induced shock mitigation using adaptive magnetorheological energy absorbers incorporating a time lag[J]. Journal of Vibration and Acoustics, 2015, 137(1): 011010.
[4] Ahmadian M, Appleton R J, Norris J A. An analytical study of fire out of battery using magneto-rheological dampers[J]. Shock and vibration, 2002, 9(3): 129-142.
[5] Li Z C, Wang J. A gun recoil system employing a magnetorheological fluid damper[J]. Smart Materials and Structures, 2012, 21(10), 105003-105012.
[6] Zhu C S. The response time of a rotor system with a disk-type magnetorheological fluid damper[J]. International Journal of Modern Physics, 2005, 19(7-9): 1506-1512.
[7] Zheng J J, Li, Z C Koo J H, Wang J. Analysis and compensation methods for time delays in an impact buffer system based on magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(6): 690-700.
[8] Sahin H, Gordaninejad F, Wang X, et al. Response time of magnetorheological fluids and magnetorheological valves under various flow conditions[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(9): 949-957.
[9] Koo J H, Concalves F D. Ahmadian M. A Comprehensive analysis of the response time of MR dampers[J]. Smart materials and structures, 2006, 15(2): 351-358.
[10] Strecker Z, Roupec J, Mazurek I. Design of magnetorheological damper with short time response[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(14): 1951-1958.
[11] Kikuchi T, Noma J, Akaiwa S, et al. Response time of magnetorheological fluid–based haptic device[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(7): 859-865.
[12] 李赵春, 王炅. 火炮磁流变阻尼器试验分析与动态模型[J]. 振动与冲击, 2012, 31(1): 64-67.
LI Zhao-chun, WANG Jiong. Experimental analysis and dynamic model of a gun magneto-rheological damper[J]. Journal of vibration and shock, 31(1): 64-67.
[13] Laun H M, Gabriel C. Measurement modes of the response time of a magneto-rheological fluid (MRF) for changing magnetic flux density[J]. Rheol. Acta, 2007, 46: 665-676.
[14] 张莉洁, 常家东, 王炅, 等. 磁流变冲击后坐控制系统试验研究[J].振动与冲击, 2014, 33(22): 115-120.
ZHANG Li-jie, Chang Jia-dong, Wang Jiong, et al. Experimental research of Magneto-Rheological recoil control system[J]. Journal of vibration and shock, 2014, 33(22): 115-120.

PDF(1298 KB)

Accesses

Citation

Detail

段落导航
相关文章

/