均匀湍流诱发的侧斜螺旋桨的随机振动特性研究

王力 、谌勇 、华宏星

振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 7-12.

PDF(924 KB)
PDF(924 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 7-12.
论文

均匀湍流诱发的侧斜螺旋桨的随机振动特性研究

  • 王力 、谌勇 、华宏星
作者信息 +

Random vibration of a skewed propeller-shaft system induced by homogeneous turbulence

  • WANG Li   CHEN Yong  HUA Hongxing
Author information +
文章历史 +

摘要

根据湍流统计理论和随机振动理论,研究了一个弹性侧斜桨-轴系统的振动响应。首先将螺旋桨沿半径方向划分为许多条带,通过相关分析法计算了均匀湍流作用在螺旋桨面上的非定常力谱,得到压力谱的空间分布;然后把条带压力谱映射到每个条带的点上,根据随机振动理论求解系统的弹性振动响应,并与刚性桨的计算结果进行对比;最后通过改变系统动力学参数,分析弹性、阻尼等因素对螺旋桨随机振动响应的影响。结果表明,轴系材料越软,桨叶材料越刚硬,湍流引起的随机振动响应越小;增加系统的阻尼可以明显降低系统固有频率附近的响应。研究为进一步研究螺旋桨的减振降噪打下基础。

Abstract

The random vibration of a skewed propeller-shaft system induced by homogeneous turbulence was numerically investigated. Firstly, the unsteady pressure spectrum exerted on the propeller surface by homogeneous turbulence was computed with the correlation analysis method to obtain its spatial distribution. Secondly, taking the computed unsteady pressure spectrum as the input, the elastic vibration responses of the system were solved with the random vibration theory. The results were compared with those of the corresponding rigid propeller-shaft system. Finally, the effects of elasticity, damping, etc, on random vibration responses of the system were analyzed through varying the system’s             dynamic parameters. The results showed that the softer the shaft material and the harder the propeller blade material, the smaller the random vibration responses of the system induced by turbulence; increasing the system’s damping can obviously decrease vibration responses of the system near its natural frequencies. This study laid a foundation for further studying vibration and noise reduction of skewed propeller-shaft systems in submarines.

关键词

侧斜桨 / 湍流 / 随机振动

Key words

skewed propeller / turbulence / random vibration

引用本文

导出引用
王力 、谌勇 、华宏星. 均匀湍流诱发的侧斜螺旋桨的随机振动特性研究[J]. 振动与冲击, 2018, 37(5): 7-12
WANG Li CHEN Yong HUA Hongxing . Random vibration of a skewed propeller-shaft system induced by homogeneous turbulence[J]. Journal of Vibration and Shock, 2018, 37(5): 7-12

参考文献

[1] Xie J, Zhou Q, Joseph P F. Tone noise prediction of a propeller operating in non-uniform flows [J]. AIAA journal, 2011, 49(1): 111-118.
[2] Dylejko P G, Kessissoglou N J, Tso Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of sound and vibration, 2007, 300(1): 101-116.
[3] Blake W K. Mechanics of flow-induced sound and vibration V2: complex flow-structure interactions [M]. Dutch: Elsevier, 2012.
[4] Homicz G F, George A R. Broadband and discrete frequency radiation from subsonic rotors [J]. Journal of Sound and Vibration, 1974, 36(2): 151-177.
[5] Thompson D E. Propeller time-dependent forces due to non-uniform flow [D]. Pennsylvania State: Pennsylvania State University, 1976.
[6] Sevik M M. The Response of a Propulsor to Random Velocity Fluctuations[R]. NO. N00017-70-C-1407-2,PENNSYLVANIA STATE UNIV UNIVERSITY PARK ORDNANCE RESEARCH LAB, 1970.
[7] Merz S, Kinns R, Kessissoglou N. Structural and acoustic responses of a submarine hull due to propeller forces[J]. Journal of Sound and Vibration, 2009, 325(1): 266-286.
[8] Anderson J M, Catlett M R, Stewart D O. Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion[J]. AIAA journal, 2014, 53(1): 81-92.
[9] Jiang C W, Chang M, Liu Y. The effect of turbulence ingestion on propeller broadband forces [J]. 1994.
[10] Catlett M R, Anderson J M, Stewart D O. Aeroacoustic Response of Propellers to Sheared Turbulent Inflow[C]//18th AIAA/CEAS Aeroacoustics Conference. 2012: 2012-2137.
[11] Lachowski F F. Aerodynamic analysis of a propeller in a turbulent boundary layer flow [M]. Thesis (M.S.)--Florida Atlantic University, 2013.
[12] Massaro M, Graham J M R. The effect of three-dimensionality on the aerodynamic admittance of thin sections in free stream turbulence[J]. Journal of Fluids and Structures, 2015, 57: 81-90.
[13] Sears W R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences, 1941, 8(3): 104-108.
[14] Newton R E, Zienkiewicz O C. Coupled vibrations of a structure submerged in a compressible fluid[C]//Paper at International Symposium of Finite Element Techniques, Stuttgart. 1969.
[15] Goodwin A J H. The design of a resonance changer to overcome excessive axial vibration of propeller shafting [J]. Trans. Inst. Mar. Eng, 1960, 72: 37-63.
[16] 张磊, 吴小平, 刘洋浩. 船用螺旋桨三维建模方法研究[J]. 船舶与海洋工程, 2014, 2: 010.
[17] Young Y L. Fluid–structure interaction analysis of flexible composite marine propellers [J]. Journal of Fluids and Structures, 2008, 24(6): 799-818

PDF(924 KB)

324

Accesses

0

Citation

Detail

段落导航
相关文章

/