为了进一步提高气体静压轴承的工作精度和稳定性,本文根据冲击射流理论对气体轴承进气孔区域气体流动状态和传热特性进行分析,将供气孔-气膜入口区域流场划分成四个部分,即:自由射流区、滞止区、过渡区、出口壁面射流区。基于二维平面流函数和大涡模拟方法,确定了气膜微振动的产生源于进口区域流场内存在三种典型气旋形式,即:供气孔附近的主气旋,气腔内部的次气旋和气膜入口的附加气旋。利用气体分子运动论结合表面-界面物理方法,明确了三种气旋的产生机理,发展规律和变化趋势,同时进一步研究了不同工况下气膜内压力的变化与四个区位置以及范围之间的关系,并对气膜内压力波动的位置及强度进行分析。最后,通过搭建试验台测试轴承气膜的振动幅值变化和频率响应函数,不仅验证了三类气旋的存在及其分布特征,有力证明了供气孔入口区域流场分区设想的合理性;通过数值计算和实验数据相结合,还进一步给出了影响气膜微振动强度的影响因素及其规律。
Abstract
In order to further improve working accuracy and stability of an air bearing, gas flow state and heat transfer characteristics of its inlet region were analyzed according to the impinging jet theory, the flow field of gas supply hole was divided into four parts including free jet zone, stagnation one, transition one and outlet wall jet one. Based on the two-dimensional planar flow function and the large eddy simulation method, it was determined that micro-vibration of gas film is caused due to three typical cyclonic forms in the inlet region including main cyclone near gas supply hole, sub-cyclone inside gas cavity and additional one at gas film inlet. The evolution mechanism, development law and varying trend of the three cyclones were clarified with the gas molecular motion theory combined with the surface-interface physical method. At the same time, relations among pressure change in gas film, 4 zones’ positions and ranges were studied, location and intensity of pressure fluctuation in gas film were analyzed. At last, vibration amplitude variation and frequency response function of gas film were measured on a test rig to verify the existence and distribution of the three cyclones, and the reasonableness of gas supply hole flow field partition. The influence factors and laws of gas film micro-vibration intensity were also given with the combination of numerical computation and test data.
关键词
气体轴承 /
微振动 /
气旋 /
冲击射流 /
大涡模拟
{{custom_keyword}} /
Key words
air bearing /
micro-vibration /
cyclone /
impinging jet /
large eddy simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHINNO H, HASHIZUME H, YOSHl0KA H, et al. X-Y-0-Nano-positioning table system for a motor machine[J].Annals of the CIRP,2004,53(1): 337-340
[2] 张景和,张顺国,赵海潇,等.大型超精密机床导轨卸荷系统结构设计与测试[J].光学精密工程, 2007,15(9):1382-1390
ZHANG Jing-he,ZHANG Shun-guo,ZHAO Hai-xia. Structure design and test for guide unloading system of large ultra-precision machine[J]. Optics and Precision Engineering, 2007, 15(9):1382-1390
[3] 黄海,孟光. 考虑二阶滑移流效应的微型气浮轴承-转子稳定性分析及其动态响应[J].振动与冲击,2008,27(5):112-114,124
HUANG Hai,MENGGuang.Stability and Dynamical Response of a Micro Rotor System Supported by Micro Gas Bearings in Consideration of the Second-Order Slip Flow Effect[J]. Journal of Vibration and Shock,2008,27(5):112-114,124
[4]梁峰,包日东.微尺度输流管道考虑热效应的流固耦合振动分析[J].振动与冲击,2015,34(5):141-144
LIANG Feng;BAORi-dong.Fluid-structure interaction of microtubes conveying fluid considering thermal effect[J].Journal of Vibration and Shock,2015,34(5):141-144
[5] BELFORTE G, RAPARELLI T, VIKTOROVV. Discharge coefficients of orifice-type restrictor for aerostatic bearings[J]. Tribology International, 2007, 40(3): 512-521.
[6] AOYAMA T, KAKINUMA Y, KOBAYASHI Y. Numerical and experimental analysis for the small vibration of aerostatic guideways[J].Annals of the CIRP, 2006, 55(1): 419-422.
[7] AOYAMA T, KOIZUMI K, KAKIMUMA Y, et al. Numerical and experimental analysis of transient state micro-bounce of aerostatic guideways caused by small pores[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 367-370.
[8] SAWADA K, KAWAI T, EBIHARA K, et al. Improvement of air bearing performance by means of laminarization and its application to ultraprecision micromachining[C]. Proceeding of the Euspen Int. Topical Conference, May 19-20,2003, Aachen University, Aachen, 2003: 61-64.
[9]CHEN Xuedong, HE Xueming. The effect of the recess shape on performance analysis of the gas lubricated bearing in opticallithography[J].Tribology International,2006,39(11): 1336-1341.
[10]张山,王雷.基于腹底式被动阻尼器抑制精密气浮工作台的定位噪声[J].光学精密工程,2012,20(12):2706-2711
ZHANG Shan, WANG Lei. Suppression of positioning noise of precision air bearing stage based on abdominal and passive damper[J]. Optics and Precision Engineering,2012, 20(12): 2706-2711
[11]王贵林,李圣怡,粟时平.基于超精密应用的高刚度高阻尼空气静压导轨研究[J].航空精密制造技术,2001,37(6):1-5
WANG Guilin, Li Shengyi, Su Shiping. A Study on Aerostatic Slider with High Stiffnessand High Damping for Ultraprecision Applications[J]. Aviation Precision Manufacturing Technology, 2001,37(6):1-5
[12]张鸣,朱煜,段广洪.超精密气浮工件台的微振动及其抑制[J].制造技术与机床,2005,(11):47-49
ZHANG Ming, ZHU Yu, DUAN Guanghong. Micro-vibration of Ultra-precision Gas Bearing Linear Motion Stage and Its Elimination[J]. MANUFACTURING TECHNOLOGY & MACHINE TOOL, 2005,(11):47-49
[13]向洋,陈瀚,陈学东. 周期分布压力腔的小孔节流圆形静压气体轴承静动态特性研究[J].武汉理工大学学报,2012,34(2):115-120
XIANG Yang,CHENHan,CHENXue-dong. Study of Static and Dynamic Characteristics of a Circular Aerostatic Bearing with Periodic Orifice Restrictors and Feed Pockets[J]. Journal of Wuhan University of Technology, 2012,34(2):115-120
[14] SAWADA K,KAWAI T,EBIHARA K,et a1.Improvement of air bearing performance by means of laminarization and its application to ultra-precision micromachining[J].Proceedingsof the Euspen Topical Conference,2003,Aachen:61-64
[15] YOSHIMOTO S.Aerostatic thrust bearing with a self-controlled restrictor employing a floating disk[J]. JSME International Journal Series C,1994,37(2):369 375.
[16]朱襟成. 气浮支承动态特性及其微振动研究[D].武汉:华中科技大学,2014
Zhu Jin Cheng. Research on Dynamic Characteristics and Micro - vibration of Air Bearing[D]. Wuhan: Huazhong University of Science and Technology, 2014
[17]陈东菊,边艳华,周帅. 空气静压导轨气膜波动主要影响因素分析[J]. 机械工程学报, 2014,15:97-103.
CHEN Dongju;BIANYanhua;ZHOUShuai.Influence Factor Analysis for Gas Fluctuation of Aerostatic Guideway[J]. Journal of Mechanical Engineering, 2014,15:97-103.
[18] 叶燚玺. 超精密运动平台中气浮支承振动特性的研究[D]. 武汉:华中科技大学, 2010.
Ye Yuxi. Study on Vibration Characteristics of Air Bearing in Ultra - precision Motion Platform[D]. Wuhan: Huazhong University of Science and Technology, 2010
[19] 董志勇. 冲击射流[M].北京:海洋出版社, 1997:58-62
Dong Zhiyong. Impinging jet[M]. Beijing: Ocean Press, 1997:58-62
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}