双层泡沫铝夹芯板抗滚石冲击结构性能优化研究

程鹏1,李伟2,翟敏刚3,王东坡4

振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 85-91.

PDF(2088 KB)
PDF(2088 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 85-91.
论文

双层泡沫铝夹芯板抗滚石冲击结构性能优化研究

  • 程鹏1,李伟2,翟敏刚3,王东坡4
作者信息 +

Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact

  • CHEN Peng1, LI Wei2, ZHAI Min-gang3 WANG Dong-po4
Author information +
文章历史 +

摘要

在山区桥墩抗滚石冲击领域中,防护结构优良的耗能性能是保证桥墩安全稳定的关键。为此,引入泡沫铝夹芯结构,通过MTS压缩试验与动力有限元分析芯体厚度变化对夹芯板耗能性能的影响。结果表明:相比于单层泡沫铝夹芯板,相同压载条件下双层泡沫铝夹芯板具有更优良的耗能能力;对于双层泡沫铝夹芯板,一定程度上增大上下层泡沫铝芯体厚度均可有效提升夹芯板耗能性能,然而,当芯体厚度增大到一定值时,夹芯板耗能性能不再显著提升;双层泡沫铝夹芯板上下层厚度的最优化比例示不同考虑因素而定。上述研究成果已应用于S303映—卧公路青岗坪渔子溪大桥桥墩,防护效果显著。

Abstract

Excellent energy-absorption property of aluminum foam sandwich (AFS) structure is the crucial to ensure the safety and stability of bridge piers against rockfalls in mountainous areas. In order to analyze the effect of AF core thickness on energy-absorption performance of AFS panels, laboratory compression tests and dynamic finite element analysis were performed. The results showed that a double-layer AFS panel has a better energy absorption performance than a single-layer AFS one does under the same loading condition; for double-layer AFS panels, increasing the upper layer or/and the lower layer AF core thickness can effectively improve their energy absorption performance; the performance is no longer significant when core thickness increases to a certain threshold; an optimized proportion of AF core thickness is Tupper:Tlower = 3:2. The study results were applied to the demonstration project of YU Zixi bridge piers, the protection effect was remarkable.

关键词

滚石冲击 / 泡沫铝夹芯板 / 耗能缓冲 / 结构优化

Key words

rockfalls impact / aluminum foam sandwich panel / energy absorption / structure optimization

引用本文

导出引用
程鹏1,李伟2,翟敏刚3,王东坡4. 双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J]. 振动与冲击, 2018, 37(5): 85-91
CHEN Peng1, LI Wei2, ZHAI Min-gang3 WANG Dong-po4. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact[J]. Journal of Vibration and Shock, 2018, 37(5): 85-91

参考文献

[1] 张路青, 杨志法, 许兵. 滚石与滚石灾害[J]. 工程地质学报, 2004, 12(3): 225-231.
ZHANG Lu-qing, YANG Zhi-fa, XU Bing. The rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231.
[2] 沈均, 何思明, 吴永. 滚石灾害研究现状及发展趋势[J]. 灾害学, 2008, 23(4): 122-125.
SHEN Jun, HE Si-ming, WU Yong. The research status and development trend of rockfall hazards[J]. Journal of Catastrophology, 2008, 23(4): 112-125.
[3] 王东坡, 何思明, 等. 桃关隧道柔性轻钢棚洞结构作用机理研究[J]. 兵工学报, 2013, 34(supp1): 260-266.
WANG Dong-po, HE Si-ming, et al. Study on the mechanism of the structure of the flexible light steel shed in the Tao-guan tunnel[J]. Acta Armamentarii, 2013, 34(supp1): 260-266.
[4] 黄雨, 孙启登, 许强. 滚石运动特征研究新进展[J]. 振动与冲击, 2010, 29(10): 31-35.
HUANG Yu, SUN Qi-deng, XU Qiang. New process in the study of motion characteristics of rockfall[J]. Journal of Vibration and Shock, 2010, 29(10): 31-35.
[5] 张中俭, 张路青. 滚石灾害防治方法浅析[J]. 工程地质学报, 2007, 15(5): 712-716.
ZHANG Zhong-jian, ZHANG Lu-qing. Prelmmary analyses of prevention and mitigation measures for rockfall hazards[J]. Journal of Engineering Geology, 2007,15(5): 712-716.
[6] 何思明, 王东坡, 吴永. 崩塌滚石灾害的力学机理与防治技术[J]. 自然杂志, 2014, 36(5): 336-344.
HE Si-ming, WANG Dong-po, WU Yong. Formation mechanism and key prevention technology of rockfalls[J]. Chinese Journal of Nature, 2014, 36(5): 336-344.
[7] Bozzolo D and Pamini R. Simulation of rock falls down a valley slide [J]. Acta Mechanica, 1986, 63: 113-130.
[8] Hungr O, Beckie R D. Assessment of the hazard from rock fall on a highway [J]. Can. Geotech. J. 1998, (35):409.
[9] L R Alejano, H W Stockhausen, E Aloso. A statistics-based empirical method for assessing accident risk from rockfalls in quarries [J]. International Journal of Rock Mechanics & Mining Science, 2008: 1-21.
[10] 康建功,石少卿,陈进.泡沫铝衰减冲击波压力的理论分析[J]. 振动与冲击,2010, 29(12): 128-131.
KANG Jian-gong, SHI Shao-qing, CHEN Jin. Theoretical analysis of shock wave pressure of aluminum foam [J]. Journal of Vibration and Shock, 2010, 29(12): 128-131.
[11] 邹广平, 唱忠良, 明如海, 等. 泡沫铝夹芯板的冲击性能研究[J]. 兵工学报, 2009, 30(2): 276-279.
ZOU Guang-ping, CHANG Zhong-liang, MING Ru-hai, et al. Study on impact performances of sandwich panel with foam aluminum[J]. Acta Armamentarii, 2009, 30(2): 276-279.
[12] 杨福俊, 卢位昌, 何小元. 芯材厚度及胞孔结构对闭孔泡沫铝三明治夹芯梁弯曲性能的影响[J]. 东南大学学报(自然科学版), 2013, 43(5): 1045-1049.
YANG Fu-jun, LU Wei-chang,HE Xiao-yuan. Effect of the thickness and cell structure on flexural behavior of closed-cell aluminum foam sandwich beams[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 1045-1049.
[13] 隋顺彬, 康建功. 面板材料对泡沫铝夹芯梁抗冲击性能的影响[J]. 工程爆破, 2011, 17(1): 20-23.
SUI Shun-bin, KANG Jian-gong. Influence of face sheet materials on anti- impact performance of aluminum foam sandwich beam[J]. Engineering Blasting, 2011, 17(1): 20-23.
[14] 王东坡,李伟,何思明,等. 泡沫铝夹芯板加固山区跨泥石流桥墩抗冲结构优化研究, 振动与冲击, 2016, 35 (10):108-114
WANG Dongpo, LI Wei, HE Siming, et.al. Study on the Structure Optimization of Aluminum Foam Sandwich Panel for Bridge Pier Reinforcement across Debris Flow in Mountain Areas [J] Journal of Vibration and Shock,  2016, 35 (10):108-114
[15] D Ruan, G Lu, Y C Wong. Quasi-static indentation tests on aluminum foam sandwich panels[J]. Composite Structures, 2010, 92(9): 2039-46.
[16] Kapil Mohan, Tick Hon Yip, Sridhar Idapalatapi, et al. Impact response of aluminum foam core sandwich structures[J].Materials Science and Engineering A, 2011, 529: 94-101.
[17] 石少卿, 刘仁辉, 汪敏. 钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J]. 振动与冲击, 2008, 27(4): 143-146.
SHI Shao-qing, LIU Ren-hui, WANG Min. Shock wave reduction behavior of a new compound structure composed of a foam aluminum layer between two steel plates[J]. Journal of Vibration and Shock, 2008, 27(4): 143-146.
[18] 李斌潮,赵桂平,卢天健. 闭孔泡沫铝低速冲击防护的临界条件与优化设计[J]. 固体力学学报,2011, 32(4) : 325—338.
LI Bin-chao, ZHAO Gui-ping, LU Tian-jian. Critical conditions and optimal design of closed-celled aluminum foam protection under low velocity impact[J]. Chinese Journal of Solid Mechanics, 2011, 32(4) : 325—338.

PDF(2088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/