四边自由矩形板横向振动的近似解及其实验

付江松1,徐 鉴1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 92-97.

PDF(1144 KB)
PDF(1144 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (5) : 92-97.
论文

四边自由矩形板横向振动的近似解及其实验

  • 付江松1 , 徐  鉴1
作者信息 +

An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification

  •   FU Jiang-song 1   XU Jian 1
Author information +
文章历史 +

摘要

针对四边自由矩形板横向振动目前没有精确解的问题,本文构造出四边自由矩形板横向振动振型函数的一种近似解。由于矩形板发生横向振动时会形成驻波,按不同的驻波类型,我们采用不同的组合级数对驻波所反映的矩形板振型函数精确解进行逼近,进而得到了四边自由矩形板振型函数的近似解。为了验证近似解的有效性,搭建了四边自由矩形薄板横向振动的实验平台。通过简谐激励得到了薄板在0至2000Hz频带内的一系列二维驻波图形(克拉尼斑图)。将实验结果(克拉尼斑图)与近似解得到的驻波图形相比,发现两者从定性、定量两方面均吻合得较好,从而验证了近似解的正确性。

Abstract

Aiming at no exact solution to transverse vibration of a rectangular plate with 4 free edges, an approximate solution to transverse vibration mode functions of this plate was proposed here. Following the fact that transverse vibration of a rectangular plate induces various standing waves, trying to combine them and approach the exact solution to mode functions of the rectangular plate, then an approximate solution to transverse vibration mode functions of this plate was formed. In order to verify the validity of the approximate solution, an experimental platform for the transverse vibration of a rectangular plate with 4 free edges was designed and made. The experimental results showed that a series of two-dimensional standing wave patterns (Chladni patterns) of the plate are obtained within the simple harmonic excitation frequency range of 0 to 2000Hz. Comparing the experiment results (Chladni patterns) to the standing wave patterns in the approximate solution, it was shown that they agree well each other qualitatively and quantitatively, so the correctness of the approximate solution is verified.

关键词

四边自由矩形板 / 克拉尼图形 / 驻波 / 振型函数 / 近似解

Key words

rectangular plate with 4 free edges / Chladni pattern / standing wave / vibration mode function / approximate solution

引用本文

导出引用
付江松1,徐 鉴1. 四边自由矩形板横向振动的近似解及其实验[J]. 振动与冲击, 2018, 37(5): 92-97
FU Jiang-song 1 XU Jian 1. An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification[J]. Journal of Vibration and Shock, 2018, 37(5): 92-97

参考文献

[1] Mindlin R D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. J.of Appl.mech, 1951, 18(1):31-38.
[2] Chang W P, Shoou-Chian J. Nonlinear free vibration of heated orthotropic rectangular plates[J]. International Journal of Solids & Structures, 1986, 22(3):267-281.
[3] Eslami H, Kandil O A. Nonlinear forced vibration of orthotropic rectangular plates using the method of multiple scales[J]. Aiaa Journal, 1971, 27(7):955-960.
[4] Eslami H, Kandil O A. Two-mode nonlinear vibration of orthotropic plates using method of multiple scales[J]. Aiaa Journal, 1989, 27(7):961-967.
[5] Mochida Y, Ilanko S. Bounded natural frequencies of completely free rectangular plates[J]. Journal of Sound & Vibration, 2008, 311(1–2):1-8.
[6] Wang C Y. Vibrations of Completely Free Rounded Regular Polygonal Plates[J]. International Journal of Acoustics & Vibrations, 2015, 20(2):107-112.
[7] 许琪楼. 四角点支承四边自由矩形板自振分析新方法[J]. 振动与冲击, 2013, 32(3):83-86.
XU Qi-lou. A new analysis method for free vibration of a rectangular plate with 4-free-edges and 4 corner point supportsclamped[J] . Joumal of Vibration and Shock, 2013, 32(3):83-86.
[8]  许琪楼.有角点支座矩形板自振分析[J]. 振动与冲击, 2013, 32(17):84-89.
 XU Qi-lou. Free Vibration analysis of a rectangular plate with corner point supports[J] . Joumal of Vibration and Shock, 2013, 32(17):84-89.
[9] 曾军才, 王久法, 姚望,等. 正交各向异性矩形板的自由振动特性分析[J]. 振动与冲击, 2015, 34(24):123-127.
 ZENG Jun-cai, WANG Jiu-fa, YAO Wang, et al.Free vibration characteristics of orthotropic rectangular plates[J] . Joumal of Vibration and Shock, 2015, 34(24):123-127.
[10] 曹志远. 不同边界条件功能梯度矩形板固有频率解的一般表达式[J]. 复合材料学报, 2005, 22(5):172-177.
 CAO Zhi-yuan. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions[J]. Acta Materiae Compositae Sinica, 2005, 22(5):172-177.
[11] 方奕忠,王 钢,沈 韩,崔新图,廖德驹,冯饶慧.方形薄板二维驻波的研究[J].物理实验,2014,34(1):33-36.
 FANG Yi-zhong, WANG Gang, SHEN Han, CUI Xin-tu, LIAO De-ju, FENG Rao-hui. Research of 2-dimensional standing waves in square plate[J]. Physics Experimentation, 2014,34(1):33-36.
[12] Rossing T D. Chladni’s law for vibrating plates[J]. American Journal of Physics, 1982, 50(3):271-274.
[13] 王继超, 王慧. Chladni图案的MATLAB模拟[J]. 实验科学与技术, 2011, 09(2):181-183.
 WANG Ji-chao, WAHG Hui. Simlation of Chladni Patterns with MATLAB[J]. Experiment Science and Technology, 2011, 09(2):181-183.

PDF(1144 KB)

Accesses

Citation

Detail

段落导航
相关文章

/