悬索面内次谐波共振受温度效应影响研究

赵珧冰 1,金波 2,黄超辉 1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 1-6.

PDF(1080 KB)
PDF(1080 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 1-6.
论文

悬索面内次谐波共振受温度效应影响研究

  • 赵珧冰 1,金波 2,黄超辉 1
作者信息 +

Investigation of temperature effects on the inplane subharmonic resonances of suspended cables

  • ZHAO Yaobing 1,  JIN Bo 2,  HUANG Chaohui 1
Author information +
文章历史 +

摘要

整体均匀温度变化会导致悬索形成新的热应力构型,影响张拉力和垂度大小。温度变化对于悬索非线性动力学方程的影响可通过与索力和垂度相关的两个无量纲参数体现。本文基于考虑温度变化影响下的悬索面内非线性动力学方程,首先利用Galerkin法对运动方程进行离散,然后运用多尺度法求解1/2和1/3单模态面内次谐波共振响应的近似解,并得到了相应的幅频响应方程,最后通过数值算例从定性和定量的角度探究温度变化对其共振响应的具体影响。算例研究表明温度变化对悬索次谐波共振响应特性影响明显,且不同垂跨比的悬索其振动特性受温度变化的影响有区别。当垂跨比较小时,一定程度的温度变化会导致其振动特性发生定性和定量的改变,改变幅频响应曲线的偏转方向及程度,影响共振区间及响应幅值。当垂跨比进一步增加后,温度变化仅会产生定量影响,改变幅频响应曲线偏转程度,影响系统共振幅值。由于悬索存在初始张拉力,相同程度的升温和降温对悬索次谐波振动特性的影响不对称。

Abstract

A new thermal stressed configuration of suspended cables was generated under the effects of temperature variations which lead to some changes of the cable tension force and sag. The effects of temperature changes on the nonlinear equations of motion of a suspended cable are reflected by two nondimensional factors related to the cable tension and sag. On the basis of the nonlinear inplane vibration equations of the suspended cable under harmonic excitation where the temperature effects were taken into consideration, the Galerkin method was introduced to discretize the nonlinear partial differential equations firstly, then the multiple scales method was used to obtain the approximate solutions of 1/2 and 1/3 order subharmonic resonances, and the corresponding frequency response equations were obtained. Furthermore, the temperature effects on the resonance responses were investigated quantitatively and qualitatively by using numerical examples. The numerical results show that the effects of different temperature variations on the subharmonic resonances of the suspended cable are obvious, and these effects are closely related to the sagtospan ratio. As to the case of small sagtospan ratio, the nonlinear vibration characteristics would be varied by the temperature effects quantitatively and qualitatively, and the deflection and its degree of the frequency response curves are changed under the temperature effects, and the range of resonances and the response amplitudes are also affected. As to the case of large sagtospan ratio, only some quantitatively changes are induced by the temperature variations, and the response amplitudes are altered. Due to the initial tension force, the effects of warming and cooling on the nonlinear subharmonic vibration behaviors of the suspended cable are not symmetric.

关键词

悬索 / 温度变化 / 多尺度法 / 次谐波共振 / 幅频响应曲线

Key words

suspended cable / temperature variations / multiple scales method / sub-harmonic resonance / frequency response curves

引用本文

导出引用
赵珧冰 1,金波 2,黄超辉 1 . 悬索面内次谐波共振受温度效应影响研究[J]. 振动与冲击, 2018, 37(6): 1-6
ZHAO Yaobing 1, JIN Bo 2, HUANG Chaohui 1. Investigation of temperature effects on the inplane subharmonic resonances of suspended cables[J]. Journal of Vibration and Shock, 2018, 37(6): 1-6

参考文献

[1]. 康厚军, 郭铁丁, 赵跃宇, 等. 大跨度斜拉桥非线性振动模型与理论研究进展[J]. 力学学报,2016, 48(3): 519-535. KANG Hou-jun, GUO Tie-ding, ZHAO Yue-yu, et al. Review on nonlinear vibration and modeling of large span cable-stayed bridge [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535.
[2]. 陈波, 郑瑾, 王建平. 桥梁结构温度效应研究进展[J]. 武汉理工大学学报, 2010, 32(24): 79-83.
CHEN Bo, ZHENG Jin, WANG Jian-ping. State-of-the-art of the temperature effects of bridges [J]. Journal of Wuhan University of Technology, 2010, 32(24): 79-83.
[3]. Irvine H M. Cable Structures [M]. Cambridge, N J: MIT Press, 1981: 82-83.
[4]. Treyssede F. Free vibrations of cables under thermal stress [J]. Journal of Sound and Vibration, 2009, 327(1): 1-8.
[5]. Lepidi M, Gattulli V. Static and dynamic response of elastic suspended cables with thermal effects [J]. International Journal of Solids and Structures, 2012, 49(9): 1103-1116.
[6]. Montassar S, Mekki O.B, Vairo G. On the effects of uniform temperature variations on stay cables [J]. Journal of Structural Health Monitoring, 2015, 5(5): 735-742.
[7]. 杨志安, 刘鹏飞, 席晓燕. 温度场中输电线在谐扰力作用下的1/3次亚谐共振研究[J]. 工程力学, 2007, 24(8): 182-187.
YANG Zhi-an, LIU Peng-fei , XI Xiao-yan. 1/3 sub-harmonic resonance of suspended cable subjected to harmonic excitation in temperature field [J]. Engineering Mechanics, 2007, 24(8): 182-187.
[8]. 汪峰, 文晓旭, 陈福青. 温度和桥面激励联合作用下斜拉索非线性振动特性分析[J]. 科学技术与工程, 2014, 25(14): 135-139.
WANG Feng, WEN Xiao-xu, CHEN Fu-qing. Nonlinear vibration analysis of long cables subjected to deck excitation and temperature [J], Science Technology and Engineering, 2014, 25(14): 135-139.
[9]. 赵珧冰, 孙测世, 彭剑, 等. 温度变化对拉索频率与索力的影响[J]. 应用力学学报, 2013, 30(6): 904-908.
ZHAO Yao-bing , SUN Ce-shi, PENG Jian, et al . The effects of temperature changes on the frequencies and tension forces of cable [J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 904-908.
[10]. Bouaanani N, Marcuzzi P. Finite difference thermo-elastic analysis of suspended cables including extensibility and large sag effects [J]. Journal of Thermal Stresses, 2011, 34(1): 18-50.
[11]. Zhao Y B, Wang Z Q, Zhang X Y, et al. Effects of temperature variation of a cable stayed beam [J] International Journal of Structural Stability and Dynamics, 2017, 17(10): 1-18.
[12]. 赵珧冰, 孙测世, 彭剑, 等. 不同初拉力拉索对温度变化的敏感性分析[J]. 中南大学学报(自然科学版), 2014, 45(5): 1680-1685.
ZHAO Yao-bing, SUN Ce-shi, PENG Jian, et al. Sensitivity analysis of different initial tension forces of suspended cable to temperature changes [J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1680-1685.
[13]. Nayfeh A H, Pai P F. Linear and nonlinear structural mechanics [M]. John Wiley and Sons, inc. New Jersey, 2004.
[14]. Rega G. Nonlinear vibrations of suspended cables-Part II: Deterministic phenomena [J] Applied Mechanics Reviews, 2004, 57: 479-514.
[15]. Rega G, Alaggio R. Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-hopf bifurcation [J]. Journal of Sound and Vibration, 2009, 322(3): 581-611.
[16]. 金波, 赵珧冰, 张定方, 等. 温度变化对悬索非线性自由振动特性影响 [J], 应用力学学报, 2017, 34(1): 64-68.
JIN Bo, ZHAO Yao-bing, ZHANG Ding-fang, et al. Temperature effects on nonlinear free vibration characteristics of suspended cables [J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 64-68.
[17]. 赵珧冰, 彭剑. 温度变化对悬索主共振响应影响分析[J]. 振动与冲击, 2017, 36(15): 240-244.
ZHAO Yao-bing, PENG Jian. Effects of temperature changes on primary resonances of suspended cables [J]. Journal of Vibration and Shock, 2017, 36(15): 240-244.
[18]. Rega G, Benedettini F. Planar non-linear oscillations of elastic cables under sub-harmonic resonance conditions [J]. Journal of Sound and Vibration, 1989, 132(3): 367-381.

PDF(1080 KB)

Accesses

Citation

Detail

段落导航
相关文章

/