微尺度方波射流冲击阵列的传热特性研究

吕远征,夏国栋, 陈永昌

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 117-123.

PDF(1403 KB)
PDF(1403 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 117-123.
论文

微尺度方波射流冲击阵列的传热特性研究

  • 吕远征,夏国栋, 陈永昌
作者信息 +

Heat transfer characteristics of the microjet array impingement driven by rectangular pulses

  • LV Yuanzheng,XIA Guodong,CHEN Yongchang
Author information +
文章历史 +

摘要

利用数值模拟研究微尺度下方波脉冲冲击阵列的传热特性,验证模型的合理性后,不断改变方波脉冲特性,分析各项参数对冲击换热能力的影响。通过分析流场云图,详细阐述了方波脉冲微射流强化换热的机理。计算结果表明:提高时均雷诺数可有效强化占空比为0.5的方波脉冲射流阵列的换热能力;通过改变脉冲频率来强化换热能力的实际效果与流态有关,在强化频段内,紊流的换热系数增幅可达20%,层流的增幅也可达到7.5%;在合理的参数条件下,方波脉冲射流可有效增强冲击效应和涡流扰动,从而强化射流阵列的换热能力。

Abstract

The heat transfer performances of the microjets array impingement were studied by numerical simulations. After validating the model, the effects of rectangular pulses were analyzed on heat transfer characteristics by adjusting the pulse parameters. Then, some reasons for using rectangular pulse jets to enhance the heat transfer were discussed by flow field analysis. All of the simulations show that, if the duty ratio of the pulses is 0.5, the heat transfer characteristics of the microjet array will be effectively enhanced when the meantime Reynolds number is increasing. The enhancement of heat transfer by the adjustment of frequency is highly dependent on the flow regime of the jets. In the proper frequency band, the heat transfer coefficient of turbulence flow can increase by 20%, and the coefficient of laminar flow can increase by 7.5%. Under rational conditions, rectangular pulses jets can strengthen the impact effects and the disturbance of vortex in the cavity, therefore, the microjet array can obtain better heat transfer performance.

关键词

数值模拟 / 微尺度 / 脉冲冲击 / 传热

Key words

numerical simulation / micro scale;impulse impact;heat transfer

引用本文

导出引用
吕远征,夏国栋, 陈永昌. 微尺度方波射流冲击阵列的传热特性研究[J]. 振动与冲击, 2018, 37(6): 117-123
LV Yuanzheng,XIA Guodong,CHEN Yongchang. Heat transfer characteristics of the microjet array impingement driven by rectangular pulses[J]. Journal of Vibration and Shock, 2018, 37(6): 117-123

参考文献

[1]. Lee P S, Garimella S V. Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays[J]. International Journal of Heat & Mass Transfer, 2008, 51(3–4):789-806.
[2]. Ryu J H, Choi D H, Kim S J. Numerical optimization of the thermal performance of a microchannel heat sink[J]. International Journal of Heat & Mass Transfer, 2002, 45(13):2823-2827.
[3]. Gamrat G, Favre-Marinet M, Asendrych D. Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels[J]. International Journal of Heat & Mass Transfer, 2005, 48(14):2943-2954.
[4]. 周云龙, 孙振国. 蛇形微通道气液两相流动特性[J]. 化工学报, 2015, 66(11):4350-4358.
ZHOU Yunlong,SUN Zhenguo. Gas-liquid flow characteristics in serpentine microchannels[J].CIESC Journal, 2015, 66(11):4350-4358.
[5]. Xia G D, Jiang J, Wang J, et al. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks[J]. International Journal of Heat & Mass Transfer, 2015, 80:439-447.
[6]. 翟玉玲, 夏国栋, 刘献飞,等. 复杂结构微通道热沉液体强化传热过程的热力学分析[J]. 化工学报, 2014, 65(09):3403-3409.
ZHAI Yuling, XIA Guodong, LIU Xianfei. Thermodynamic analysis of enhanced heat transfer process in micro-channel heat sinks with complex structure[J]. CIESC Journal, 2014, 65(09):3403-3409.
[7]. Dairay, T, Fortuné, et al. Direct numerical simulation of a turbulent jet impinging on a heated wall[J]. Journal of Fluid Mechanics, 2015, 764:362-394.
[8]. 申江, 王建民, Lau J,等. 机械振动强化吸收式制冷机传热性能的实验研究[J]. 振动与冲击, 2016, 35(1):1-4.
Shen Jiang, Wang Jianmin, LAU J. Tests for vibration-strengthened heat transfer performance of an absorption type chiller[J].Journal of Vibration and Shock, 2016, 35(1):1-4.
[9]. 姜波, 郝卫东, 刘福国,等. 流体脉动对新型弹性管束传热特性影响的实验研究[J]. 振动与冲击, 2012, 31(10):59-63.
Jiang Bo, Hao Weidong, Liu Fuguo. Experiments on effects of fluid pulsation on heat transfer characteristics of the new type elastic tube bundle[J]. Journal of Vibration and Shock,2012, 31(10):59-63.
[10]. 耿丽萍, 周静伟, 郑传波. 信号组合对周期性射流冲击换热的影响[J]. 工程热物理学报, 2015(12):2674-2677.
Geng Liping, Zhou Jingwei, Zheng Chuanbo. Influence of Signal Combination to Heat Transfer Characteristics for Periodical Impinging Jet[J].JOURNAL OF ENGINEERING FOR THERMAL ENERGY AND POWER, 2015(12):2674-2677.
[11]. 周定伟, 马重芳, 刘登瀛. 圆形液体射流冲击单相局部对流传热的实验研究[J]. 动力工程学报, 2003, 23(04):2578-2581.
ZHOU Dingwei, MA Chongfang,LIU Dengying.Experimental Study of Single Phase Local Convective Heat Transfer Impinged by Circular Liquid Jets[J]. POWER ENGINEERING,2003, 23(04):2578-2581.
[12]. 周定伟, 马重芳. 圆形液体浸没射流冲击驻点传热的数值模拟[J]. 北京工业大学学报, 2001, 27(03):316-321.
ZHOU Dingwei, MA Chongfang. Numerical Simulation of Stagnation Point Heat Transfer with Impinging Submerged Circular Jets[J]. JOURNAL OF BEIJING POLYTECHNIC UNIVERSITY,2001, 27(03):316-321.
[13]. Uysal U, Li P W, Chyu M K, et al. Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array with Varying Jet Hole-Size and Spacing[J]. Journal of Turbomachinery, 2006, 128(1):141-150.
[14]. Dhir V K. Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets[J]. Journal of Heat Transfer, 2005, 127(7):760-769.
[15]. 马晓雁, 夏国栋, 刘青,等. 高效微射流阵列冷却热沉的阻力特性[J]. 工程热物理学报, 2006, 27(02):259-261.
MA Xiaoyan, XIA Guodong, LIU Qing.AN INVESTIGATION ON PRESSURE DROP IN A MICRO-JET IMPINGEMENT COOLING HEAT SINK[J].JOURNAL OF ENGINEERING THERMOPHYSICS,2006, 27(02):259-261.
[16]. 闫建坤,郭涛,朱惠人,等.微尺度阵列射流冲击结构换热特性实验研究[J].推进技术,2016,37(9):1681-1687.
Yan Jiankun, Guo Tao, Zhu Huiren, et al. Experimental Investigation of Heat Transfer Characteristics [J]. Journal of Propulsion Technology,2016,37(9):1681-1687.
[17]. Zumbrunnen D A, Aziz M. Convective heat transfer enhancement due to intermittency in an impinging jet[J]. Journal of Heat Transfer, 1985, 51(463):91-98.
[18]. Behera R C, Dutta P, Srinivasan K. Numerical Study of Interrupted Impinging Jets for Cooling of Electronics[J]. IEEE Transactions on Components & Packaging Technologies, 2007, 30(2):275-284.
[19]. Nebuchinov A S, Lozhkin Y A, Bilsky A V, et al. Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet[J]. Experimental Thermal & Fluid Science, 2016, 80:139-146.
[20]. Geng L, Zheng C, Zhou J. Heat transfer characteristics of impinging jets: The influence of unsteadiness with different waveforms[J]. International Communications in Heat & Mass Transfer, 2015, 66:105-113.
[21]. Husain A, Kim S M, Kim J H, et al. Thermal Performance Analysis and Optimization of Microjet Cooling of High-Power Light-Emitting Diodes[J]. Journal of Thermophysics & Heat Transfer, 2015, 27(2):235-245.
[22]. 汪健生, 王振川, 李美军. 不同工作因数下方波冲击射流的换热特性[J]. 化工学报, 2013, 64(7):2428-2435.
WANG Jiansheng, WANG Zhenchuan, LI Meijun. Heat transfer characteristics of square wave impinging jets with different duty cycles[J].CIESC Jorunal, 2013, 64(7):2428-2435.

PDF(1403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/