考虑重力影响的压电悬臂梁发电系统动力学特性研究

杨倩倩,刘丽兰

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 14-20.

PDF(2702 KB)
PDF(2702 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 14-20.
论文

考虑重力影响的压电悬臂梁发电系统动力学特性研究

  • 杨倩倩,刘丽兰
作者信息 +

Research on dynamic characteristics of piezoelectric cantilever beam generation system considering gravity influence

  • YANG Qianqian,LIU Lilan
Author information +
文章历史 +

摘要

微电子技术的进步降低了传感器的功率,从而使利用环境振动为传感器自供电成为了可能。本文建立了考虑重力影响的双稳态压电悬臂梁发电系统的力学模型,得到系统的控制方程,并进行无量纲化。借助数值分析,获得了简谐激励和白噪声激励下重力对双稳态压电悬臂梁发电系统平均输出功率的影响规律,结合半功率带宽法,在保障压电发电系统仍可进行大功率输出的前提下,提出了白噪声激励下重力最小影响区间的确定方法,上述研究结果可为压电发电系统的相关研究提供数据参考。

Abstract

The advancement of microelectronics reduces the power of sensors, making it possible to use the ambient vibration to selfsupply the sensors. The mechanical model of a bistable piezoelectric cantilever beam power generation system considering the gravity influence was established, and a dimensionless control equation of the system was obtained. By means of numerical analysis, the influence of gravity on the average output power of the bistable piezoelectric cantilever beam was investigated under the combined excitation of simple harmonic wave and white noise. Combining with the halfpower bandwidth method, the method of determining the minimum influence interval of gravity under white noise excitation was put forward under the premise of ensuring the high power output of the piezoelectric power generation system. The above results can provide  references for the related research of piezoelectric power generation systems.

关键词

双稳态压电发电系统 / 简谐激励 / 白噪声激励 / 半功率法 / 最小影响区间

Key words

 bistable piezoelectric power generation system / simple harmonic excitation / white noise excitation / half power method / minimum influence interval

引用本文

导出引用
杨倩倩,刘丽兰. 考虑重力影响的压电悬臂梁发电系统动力学特性研究[J]. 振动与冲击, 2018, 37(6): 14-20
YANG Qianqian,LIU Lilan. Research on dynamic characteristics of piezoelectric cantilever beam generation system considering gravity influence[J]. Journal of Vibration and Shock, 2018, 37(6): 14-20

参考文献

[1]  Tang X, Zuo L. Enhanced vibration energy harvesting using dual-mass systems[J]. Journal of Sound & Vibration, 2011, 330(21):5199-5209.
[2]  Onur Bilgen, Michael I. Friswell, Shaikh Faruque Ali, et al. Broadband vibration energy harvesting from a vertical cantilever piezocomposite beam with tip mass[J]. International Journal of Structural Stability & Dynamics, 2015, 15(02):1450038.
[3]  Perton M, Audoin B, Pan Y D, et al. Energy harvesting vibration sources for microsystems applications[J]. Measurement Science & Technology, 2006, 17(12):R175-R195.
[4]  Tsujiura M. Piezoelectric ceramic element for power generation and method[P]. US 20050211948 A1,2005.
[5]  Mak K H, Mcwilliam S, Popov A A, et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop[J]. Journal of Sound & Vibration, 2011, 330(25):6184-6202.
[6] Chen N, Jung H J, Jabbar H, et al. A Piezoelectric impact-induced vibration cantilever energy harvester from Speed Bump with a Low-power Power Management Circuit[J]. Sensors & Actuators A Physical, 2016, 254:134-144.
[7]  Stanton S C, Mcgehee C C, Mann B P. Nonlinear dynamics
for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator[J]. Physica D Nonlinear Phenomena, 2010, 239(10):640-653.
[8]  Burrow S G. Vibration energy harvesters with non-linear compliance[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6928.
[9]   Pellegrini S P, Tolou N, Schenk M, et al. Bistable vibration energy harvesters:A review[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(11):1303-1312.
[10]  白凤仙, 马桂帅, 董维杰等. 悬臂梁式压电振动能量收集系统输出功率的优化研究[J]. 电子学报, 2014, 42(5):883-889.
     BAI Feng-xian,MA Gui-shuai,DONG Wei-jie, et al. Optimization of the output power of cantilever piezoelectric vibration energy harvesting[J]. Acta Electronica Sinica, 2014, 42(5):883-889.
[11]  Masana R, Daqaq M F. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials[J]. Journal of Sound & Vibration, 2011, 330(24):6036-6052.
[12]  Erturk A, Inman D J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[J]. Journal of Sound & Vibration, 2011, 330(10):2339-2353.
[13]  Stanton S C, Owens B A M, Mann B P. Harmonic balance analysis of the bistable piezoelectric inertial generator[J]. Journal of Sound & Vibration, 2012, 331(15):3617-3627.
[14]  Guo K, Cao S, Wang S. Numerical and experimental studies on nonlinear dynamics and performance of a bistable piezoelectric cantilever generator[J]. Shock & Vibration, 2015, 2015(21):1-14.
[15]  Singh K A, Kumar R, Weber R J. A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction[J]. IEEE Transactions on Power Electronics, 2015, 30(12):6763-6774.
[16]  Saadon S, Sidek O. Vibration-based MEMS piezoelectric energy harvester (VMPEH) modeling and analysis for green energy source[C]// Developments in E-Systems Engineering. IEEE, 2011:527-531.
[17]  Ram G D, Praveenkumar S. PVDF polymer-based MEMS cantilever for energy harvesting[M].Artificial Intelligence and Evolutionary Computations in Engineering Systems. Springer India, 2016.

PDF(2702 KB)

1273

Accesses

0

Citation

Detail

段落导航
相关文章

/