碰撞-渐进振动系统的周期振动与分岔

吕小红1, 2 罗冠炜2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 162-167.

PDF(1178 KB)
PDF(1178 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 162-167.
论文

碰撞-渐进振动系统的周期振动与分岔

  • 吕小红1, 2   罗冠炜2
作者信息 +

Periodic motions and bifurcations of a vibroimpact system with progressive motions

  • L Xiaohong1, 2, LUO Guanwei2
Author information +
文章历史 +

摘要

建立了碰撞-渐进振动系统的力学模型。分析了在相邻两次冲击之间,系统可能呈现的运动状态,给出了每种状态的判断条件和运动微分方程。采用数值计算的方法分析了单碰周期振动和p/1(p 1)类基本碰撞振动的分岔特点,以及系统最佳渐进率对应的周期振动类型。结果表明:系统的最佳渐进效果发生在1/1周期振动时,质块 冲击缓冲垫的速度峰值附近。由于碰撞振动系统特有的擦碰奇异性,使得在1/n(n 2)单碰亚谐-渐进振动向混沌的转迁过程中,以及相邻p/1(p 1)类基本碰撞-渐进振动之间的相互转迁过程中存在实擦边或虚擦边分岔和鞍结分岔等非光滑分岔。

Abstract

The mechanical model of a vibroimpact system with progressive motions was established. The probable motion states presented by the system between two consecutive impacts were analyzed, and their judgement conditions as well as motion equations were put forward. Numerical simulations were used to examine the bifurcation characteristics of the system with two types of periodic motions, including singleimpact periodic motions and p/1(p≥1) fundamental motions, and the periodic motion forms corresponding to the best progression. The results indicate that the best progression occurs in 1/1 motion, near the peak value of the impact velocity of the mass M1. Due to its own specific grazing singularity, the system presents two forms of nonsmooth bifurcations, namely, the realgrazing or baregrazing bifurcation and saddlenode bifurcation, in the process of transition from 1/n(n≥2) singleimpact subharmonic motion with progression to chaos, and in the process of mutual transition between adjacent p/1(p≥1) fundamental motions with progression.
 

关键词

碰撞振动 / 渐进 / 周期振动 / 分岔

Key words

vibro-impact / progression / periodic motion / bifurcation

引用本文

导出引用
吕小红1, 2 罗冠炜2 . 碰撞-渐进振动系统的周期振动与分岔[J]. 振动与冲击, 2018, 37(6): 162-167
L Xiaohong1, 2, LUO Guanwei2. Periodic motions and bifurcations of a vibroimpact system with progressive motions[J]. Journal of Vibration and Shock, 2018, 37(6): 162-167

参考文献

[1] 李群宏, 陆启韶. 一类双自由度碰振系统运动分析[J]. 力学学报, 2001, 33(6): 776-786.
Li Qunhong, Lu Qishao. Analysis to motions of a two-degree-of- freedom vibro-impact system [J]. Acta Mechanica Sinca, 2001, 33(6): 776-786.
[2] Soumya Kundu, Soumitro Banerjee, James Ing et al. Singularities in soft-impacting systems [J]. Physica D, 2012, 241: 553-565.
[3] 张思进, 周利彪, 陆启韶, 线性碰振系统周期解擦边分岔的一类映射分析方法[J]. 力学学报, 2007, 39(1): 132-136.
Zhang Sijin, Zhou Libiao, Lu Qishao. A map method for grazing bifurcatin in linear vibro-impact system [J]. Acta Mechanica Sinca, 2007, 39(1): 132-136.
[4] Chillingworth D R J. Discontinuity geometry for an impact oscillator [J]. Dynamical Systems, 2002, 17(4): 380-420.
[5] Chillingworth D R J. Dynamics of an impact oscillator near a degenerate graze [J]. Nonlinearity, 2010, 23:  2723-2748.
[6] Humphries N, Piiroinen P T. A discontinuity-geometry view of the relationship between saddle–node and grazing bifurcations [J]. Physica D, 2012, 241(22): 1911-1918.
[7] Jieqiong Xu, Qunhong Li, Nan Wang. Existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system [J]. Applied Mathematics and Computation, 2011, 217(12), 5537-5546.
[8] 冯进钤. 单边碰撞系统的擦边诱导鞍结分岔[J]. 安徽大学学报, 2011, 35(5): 22-25.
Feng Jin-qian. Grazing-induced saddle-node bifurcation in a unilateral vibro-impact system [J]. Journal of Anhui University, 2011, 35(5): 22-25.
[9] F. Peterka, A. Tondl. Phenomena of subharmonic motions of oscillator with soft impacts [J]. Chaos, Solitons and Fractals, 2004, 19: 1283-1290.
[10] F. Peterka, B. Blazejczyk-Okolewska. Some Aspects of the dynamical behavior of the impact damper [J]. Journal of Vibration and Control, 2005, 11: 459-479.
[11] Chávez J P, Pavlovskaia E, Wiercigroch M. Bifurcation analysis of a piecewise-linear impact oscillator with drift [J]. Nonlinear Dynamics, 2014, 77(1-2): 213-227.
[12] Pavlovskaia E, Hendry D C, Wiercigroch M. Modelling of high frequency vibro-impact drilling [J]. International Journal of Mechanical Sciences, 2015, 91(2): 110-119.
[13] 罗冠炜, 愈建宁, 尧辉明等. 小型振动冲击式打桩机的周期运动和分岔[J]. 工程力学, 2006, 23(7): 105-113.
Luo Guanwei, Yu Jianning, Yao Huiming, et al. Periodic motions and bifurcations of a small vibro-impact pile drive[J]. Engineering Mechanics, 2006, 23(7): 105-113.
[14] Luo G W, Zhu X F, Shi Y Q. Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: Diversity and evolution of periodic-impact motions. Journal of Sound and Vibration, 2015, 334(6): 338-362.

PDF(1178 KB)

Accesses

Citation

Detail

段落导航
相关文章

/