基于DE优化系统辨识的风力机叶片自校正PID振动控制

李迺璐,徐燕,徐庆,葛强

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 195-201.

PDF(1512 KB)
PDF(1512 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 195-201.
论文

基于DE优化系统辨识的风力机叶片自校正PID振动控制

  • 李迺璐,徐燕,徐庆,葛强
作者信息 +

Vibration control of wind turbine blades based on the selftuning PID control and differential evolution algorithm

  • LI Nailu,XU Yan,XU Qing,GE Qiang
Author information +
文章历史 +

摘要

智能叶片是风力机叶片智能控制的主要方向,它能根据叶片的振动情况,利用控制算法调整叶片尾端智能驱动器的驱动力,使叶片处于最小振动状态,关键问题是在复杂运行环境下叶片系统参数发生突变时,如何设计基于最优辨识的控制规则,从而施加最优控制驱动力。对此,以风力机叶片的振动位移为控制目标,利用差分进化算法(DE)优化传统递推最小二乘法辨识的遗忘因子,得到基于最优系统辨识的叶片最佳间接自校正PID控制规则,采用此控制方法对系统模型建立Matlab文本与Simulink相结合的联合仿真模型并进行控制。仿真结果表明,在经差分进化优化辨识后的间接自校正PID 控制器可以很好的减小系统参数突变下风力机叶片的挥舞位移和扭转角,可进一步提高复杂运行环境下的叶片振动控制效果。

Abstract

The smart blade is the main direction of the intelligent control of wind turbine blades. The vibration of a blade can be significantly suppressed by the smart actuator installed on the trailing of the blade and furnished with a control algorithm. The key problem is the design of control rule based on the optimal identification to deal with the parameters’ change of the blade system in complicated operation conditions. Aiming at the control and suppression of blade vibration, the differential evolution (DE) algorithm was adopted to optimize the forgetting factor in the traditional recursive leastsquare identification and an optimal selftuning PID controller was developed based on the DE optimized identification. The proposed controller was implemented to control the system model, established in Matlab/Simulink. The simulation results show that the DE optimized selftuning PID controller performs well in suppressing the pitch angle and plunge displacement in the condition of parameter’s change. The overall vibration control effect might be further improved by the proposed controller in complicated operation conditions.

关键词

差分进化 / 间接自校正PID控制 / 振动控制 / 叶片截面

引用本文

导出引用
李迺璐,徐燕,徐庆,葛强. 基于DE优化系统辨识的风力机叶片自校正PID振动控制[J]. 振动与冲击, 2018, 37(6): 195-201
LI Nailu,XU Yan,XU Qing,GE Qiang. Vibration control of wind turbine blades based on the selftuning PID control and differential evolution algorithm[J]. Journal of Vibration and Shock, 2018, 37(6): 195-201

参考文献

[1] 胡燕平, 戴巨川, 刘德顺. 大型风力机叶片研究现状与发展趋势[J]. 机械工程学报, 2013, 49(20):140-151.
HU Yanping;DAI Juchuan;LIU Deshun. Research Status    and Development Trend on Large Scale Wind Turbine Blades[J]. Journal of Mechanical Engineering,2013, 49(20):140-151.
[2] Hansen M H. Aeroelastic instability problems for wind turbines [J].Wind Energy, 2007, 10: 551-557.
[3] Barlas T K, Van Kuik G A M. Review of State of the Art in Smart Rotor Control Research for Wind Turbines [J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27.
[4] Parker G A. Optunal  utilization  of  disturbances  for  improved fatigue-mitigation   and   speed-regulation   in   flexible   wind turbines[D]. Alabama:  University of Alabama at Tuscaloosa, 2010.
[5] Svendsen M N, hrenk S, Hegsberg J. Resonant vibration control of rotating beams[J]. Journal of Sound and Vibration, 2011, 330(9):1877-1890.
[6] 王浩宇,张云生,张果.系统辨识及自适应控制系统算法仿真实现[J]. 控制工程, 2008,15(S2): 77-80.
Wang Hao-yu, Zhang Yun-sheng, Zhang Guo. Implementation on System Identification and Adaptive System Simulation Algorithm[J]. Control Engineering of China, 2008,15(S2): 77-80.
[7] 李天利,周东辉,陈远思,王马林. 基于自校正PID控制的两轮自平衡小车[J].《自动化应用》, 2015(2):71-72.
Li Tian-li, Zhou Dong-hui, Chen Yuan-si, Wang Ma-lin, Self tuning PID control of two wheeled self-balancing vehicle[J]. Automatic Application, 2015(2):71-72.
[8] 孟祥懿,付东翔,王亚刚. 基于Dahlin算法的变风量空调自校正PID控制[J].《石油化工自动化》, 2013, 49(6):25-28.
Meng Xiang-yi, Fu Dong-xiang, Wang Ya-gang. Introduction of Self-tuning PID Control Based on Dahlin Algorithm in VAV Air Conditioner[J]. Automation in Petro-Chemical Industry, 2013, 49(6):25-28.
[9] 庄勇博. 永磁同步电机的柔性神经网络自校正PID控制方案[J].《伺服控制》, 2012(7):40-43.
[9] Zhuang Yong-bo. Flexible neural network self-tuning PID control scheme for permanent magnet synchronous motor [J], Servo Control, 2012(7):40-43.
[10] 李迺璐, Mark J.Balas. 基于抗干扰自适应算法的颤振系统的研究与仿真[J]. 测控技术, 2014, 33(9):125-127.
Li Nai-lu, Mark J. Balas. Research and Simulation of Vibration Control System Based on Adaptive Disturbance Rejecting Control Algorithm[J]. Measurement & Control Technology, 2014, 33(9):125-127.
[11] 李传峰, 徐宇, 赵晓路. 风力机翼型尾缘襟翼动态特性分析[J]. 工程热物理学报, 2014(5): 883-887.
LI Chuan-feng, XU Yu, ZHAO Xiao-Lu. Analysis on Dynamic Performance of Trailing Edge Flap on Wind turbine Airfoil[J]. Journal of Engineering Thermophysics, 2014(5): 883-887.
[12] Kallesoe BS.A low-order model for analysing effects of blade fatigue load control. Wind Energy, 2006, 9:421-436.
[13] 李迺璐, 穆安乐, Balas. 基于B-L气动模型的旋转水平风机叶片经典颤振稳定性分析[J]. 振动与冲击, 2015(23):171-176.
Li Nailu, Mu Yi, Balas.. Classical flutter stability analysis of rotating horizontal fan blade based on B-L aerodynamic model [J]. Journal of Vibration and Shock, 2015 (23): 171-176.
[14] 丁健, 杨慧中. 基于遗忘因子最小二乘的自适应学习控制[J]. 控制工程, 2013, 20(6):1010-1013.
Ding Jian, Yang Hui-zhong. Adaptive Learning Control based on Least Squares Algorithm with a Forgetting Factor[J]. Control Engineering of China, 2013, 20(6):1010-1013.
[15] 乐茂华. 关于Diophantine方程的一类求解问题[J]. 长江大学学报:自科版, 2005, 2(7):185-186.
Le Mao-hua. A class of solution problem of Diophantine equation [J], Journal of Yangtze University (Nat Sci Edit), 2005, 2(7):185-186.
[16] 陈春强, 陈前. 电流变夹层振动控制和拓扑优化研究[J]. 振动与冲击, 2016, 35(21):137-142.
Chen Chunqiang, Chen Qian. Vibration control and topology optimization of Er sandwich [J]. Journal of Vibration and Shock, 2016, 35 (21): 137-142.

PDF(1512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/