滚柱梁是阻力伞锁传力路径上的主承力件之一。某型阻力伞锁滑车试验过程中,滚柱梁失效导致开伞失败,故障分析认为滚柱梁失效模式为冲击剪切失效。本文对滚柱梁冲击剪切失效机理进行了分析,认为阻力伞锁运动机构在牵引伞初始冲量作用下获得初始冲击速度,并与滚柱梁发生碰撞-接触-挤压,该过程导致滚柱梁剪切失效。通过建立阻力伞锁运动机构的动力学模型,获得了初始冲击速度和运动机构等效质量,并将滚柱梁模型化为在均匀冲击载荷作用下的两端固支圆截面梁。应用刚塑性材料模型,考虑剪切失效厚度系数和弯曲-剪切共同作用,进行剪切失效分析,推导得到临界失效冲击速度,解释了滚柱梁失效机理。进一步讨论了套筒与滚柱梁质量比对滚柱梁失效的影响,为结构改进设计提出了建议。
Abstract
The roller beam is one of the main loadbearing members of parachute locks. In the rocketsled tests of a parachute lock, the roller beam failure led to fail in opening the drag chute. According to the failure analysis, the mode of roller beam failure under impact is shear failure. In the paper, the roller beam impact shear failure mechanism was analyzed and it is shown that the parachute lock obtains an initial impact velocity under the action of the initial impulse of extraction parachute, and then collides with the roller beam, which causes the roller beam shear failure. The initial impact velocity and the equivalent mass of the motion mechanism were obtained by modelling the dynamics of the parachute lock, and the roller beam was modelled as a circular crosssection beam clamped at both ends under uniform impact load. The rigidplastic material model was used, and the thickness coefficient of the shear failure and the bendingshear interaction were taken into account. The threshold impact velocity of roller beam failure was derived based on the bendingshear theory. The effect of the mass ratio of the sleeve to the roller beam on the roller beam failure was discussed. Some improvements for structure design were proposed.
关键词
阻力伞锁 /
刚塑性 /
临界冲击速度 /
初等失效准则 /
剪切失效
{{custom_keyword}} /
Key words
parachute lock /
rigid plastic /
threshold velocity /
elementary failure criterion /
shear failure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 余莉,明晓,胡斌. 降落伞开伞过程的试验研究[J]. 南京航空航天大学学报,2006,38(2):176-180
Yu Li, Ming Xiao, Hu Bin. Experimental investigation in parachute opening process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006,38(2):176-180
[2] 王从磊,孙建红,喻东明. 阻力伞拉直过程的影响因素分析[J]. 南京航空航天大学学报,2013,45(2):196-201
Wang Conglei, Sun Jianhong, Yu Dongming. Analysis of effect factors on deployment of drag parachute[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(2):196-201
[3] 余莉,张鑫华,李水生. 降落伞伞衣载荷的性能试验[J]. 北京航空航天大学学报,2007,33(10):1178 -1181
Yu Li, Zhang Xinhua, Li Shuisheng. Experimental on canopy payload performance parachute[J]. Journal of Beijing University of Aeronautics & Astronautics, 2007,33(10):1178 -1181
[4] 完颜振海,冯顺山,董永香,周彤. 超音速伞弹流场特性数值分析[J]. 兵工学报,2011,32(5):520 -525
WanYan Zhenhai, Feng Shunshan, Dong Yongxiang, Zhou Tong. Numerical Analysis of flow field characteristics of supersonic submunition with parachute[J]. Acta Armamentarii, 2011,32(5):520 -525
[5] Kenji Takizawa, Tayfun E. Tezduyar, et al. Special methods for aerodynamic-moment calculations from parachute FSI modelling[J]. Computational Mechanics,2015,55(6):219-226.
[6] 沈文波,季享文,基于图像视觉作动控制的寿命试验台研制[J]. 计算机测量与控制,2015.23(17),2434-2437
Shen Wenbo, Ji Xiangwen. Development of life test device based on image visual motion controlling[J]. Computer Measurement & Control, 2015.23(17),2434-2437
[7] 苏新兵,王建平,周瑞祥,某型飞机新型阻力伞锁机构改进设计[J]. 液压与气动,2008(2) :11-13
Su Xinbing, Wang Jianping, Zhou Ruixiang. Ameliorated design of new decelerated umbrella furnishment for a certain airplane[J]. Chinese Hydraulics & Penumatics, 2008(2) :11-13
[8] 余同希,邱信明,冲击动力学[M]. 北京:清华大学出版社,2011.
Yu Tongxi, Qiu Xinming, Impact Dynamics[M]. Tsinghua university Press, Beijing, 2011.
[9] Yu TX, Chen FL. Failure modes and criteria of plastic structures under intense dynamic loading:A review[J]. Matals and Materials,1998(4): 219-226.
[10] Menkes SB, Opat HJ. Broken beams[J]. Exp Mech, 1973(13): 480-486.
[11] Jones N. Plastic failure of ductile beams loaded dynamically [J]. Trans ASME J Eng Ind,1976,98(B1):131-137.
[12] Yu TX, Chen FL, A further study of plastic shear failure of impulsively loaded champed beams[J]. Int. J. Impact Engng., 2000(24):613-629
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}