基于Donnell-Mushtari理论的弹性基础薄壁圆柱壳的稳态响应研究

杨永宝,危银涛1,李雪冰1,张新月2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 21-27.

PDF(1157 KB)
PDF(1157 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 21-27.
论文

基于Donnell-Mushtari理论的弹性基础薄壁圆柱壳的稳态响应研究

  • 杨永宝 ,危银涛1,李雪冰1,张新月2
作者信息 +

Forced vibration steady-state response of thin-walled cylindrical shell on elastic foundation based on Donnell-Mushtari theory

  • YANG Yongbao1,WEI Yintao1,LI Xuebing1,ZHANG Xinyue2
Author information +
文章历史 +

摘要

基于经典的Donnell-Mushtari柱壳理论,针对弹性基础上有径向预压力作用的薄壁圆柱壳的自由振动频率给出了相应的精确解,采用本文方法计算得到的结果与有关文献中的数据一致,误差较小。基于本文方法得到薄壁圆柱壳的自由振动频率及其对应模态振型后,进一步推导得到了弹性基础上薄壁圆柱壳的强迫振动稳态响应的计算公式。并在此基础上考察了所取基础模态数量及阻尼系数大小对于薄壁圆柱壳稳态响应的影响。文中算例所得计算结果及结论可为工程应用提供一定参考。

Abstract

Based on the DonnellMushtari shell theory, exact solutions to the free vibration frequency of a thinwalled cylindrical shell subjected to radial prepressure with elastic foundations at both ends were presented, and there is little difference between the results by this method and those available in the literature. With the free vibration frequency and modal shapes of the thinwalled cylindrical shell obtained by using this method, the formulas for forced vibration steadystate responses were developed. The influence of modal numbers and damping factor on steadystate responses of the thinwalled cylindrical shell has also been investigated. The results and conclusions of numerical examples can provide references for engineering applications.
 

关键词

Donnell-Mushtari理论 / 圆柱壳 / 稳态响应 / 自由振动 / 弹性基础

Key words

 Donnell-Mushtaritheory;cylindrical shell;steady state response / free vibration / elastic foundation

引用本文

导出引用
杨永宝,危银涛1,李雪冰1,张新月2. 基于Donnell-Mushtari理论的弹性基础薄壁圆柱壳的稳态响应研究[J]. 振动与冲击, 2018, 37(6): 21-27
YANG Yongbao1,WEI Yintao1,LI Xuebing1,ZHANG Xinyue2. Forced vibration steady-state response of thin-walled cylindrical shell on elastic foundation based on Donnell-Mushtari theory[J]. Journal of Vibration and Shock, 2018, 37(6): 21-27

参考文献

[1]Saito T, Endo M. Vibration of finite length, rotatingcylindrical shells[J]. Journal of Sound and Vibration, 1986, 107(1): 17-28.
[2]Smith B L, Vronay D F. Free vibration of circular cylindrical shells of finite length[J]. AIAA Journal, 1970, 8(3): 601-603.
[3]Zhang X M, Liu G R, Lam K Y. Vibration analysis of thin cylindrical shells using wave propagation approach[J]. Journal of Sound and Vibration, 2001, 239(3): 397-403.
[4]Ip K H, Chan W K, Tse P C, et al. Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh-Ritz method[J]. Journal of sound and vibration, 1996, 195(1): 117-135.
[5]Xuebin L. Study on free vibration analysis of circularcylindrical shells using wave propagation[J]. Journal of Sound and Vibration, 2008, 311(3): 667-682.
[6]Dym C L. Some new results for the vibrations ofcircular cylinders[J]. Journal of sound and Vibration, 1973, 29(2): 189-205.
[7]Soedel W. Simplified equations and solutions for the vibration of orthotropic cylindrical shells[J]. Journal of Sound and Vibration, 1983, 87(4): 555-566.
[8] Karczub D G. Expressions for direct evaluation of wave number in cylindrical shell vibration studies using the Flügge equations of motion [J]. The Journal of the Acoustical Society of America, 2006, 119(6): 3553-3557.
[9] Leissa A W. Vibration of shells[M]. New York: Acoustical Society of America, 1993.
[10] Sheng J. The response of a thin cylindrical shell to transient surface loading [J]. AIAA Journal, 1965, 3(4): 701-709.
[11] Warburton G B. Harmonic response of cylindrical shells [J]. Journal of Engineering for Industry, 1974, 96(3): 994-999.
[12]Christoforou A P, Swanson S R. Analysis of simply-supported orthotropic cylindrical shells subject to lateral impact loads [J]. Journal of Applied Mechanics, 1990, 57(2): 376-382.
[13] Jafari A A, Khalili S M R, Azarafza R. Transient dynamic response of composite circular cylindrical shells under radial impulse load and axial compressive loads [J]. Thin-Walled Structures, 2005, 43(11): 1763-1786.
[14] 马旭, 杜敬涛, 杨铁军, 等. 基于波传播方法的边界条件对圆柱壳振动特性的影响分析[J]. 振动工程学报, 2009, 22(6): 608-613.
Ma Xu, Du Jingtao, Yang Tiejun, et al. Analysis of influence of boundary conditions on cylindrical shell dynamics based on wave propagation approach [J]. Journal of vibration Engineering, 2009, 22(6): 608-613.
[15] 王宇, 罗忠. 薄壁圆柱壳构件受迫振动的响应特征研究[J]. 振动与冲击, 2015, 34(7): 103-108.
Wang Yu, Luo Zhong. Forced vibration response characteristics of thin cylindrical shell [J]. Journal of vibration and shock, 2015, 34(7): 103-108.
[16]罗忠, 王宇, 孙宁, 等. 不同边界条件下旋转薄壁短圆柱壳的强迫振动响应计算[J]. 机械工程学报, 2015, 51(9): 64-72.
Luo Zhong, Wang Yu, Sun Ning, et al. Forced vibration response calculation of rotating short thin cylindrical shells for various boundary conditions [J]. Journal of mechanical engineering. 2015, 51(9): 64-72.
[17]李学斌. 圆柱壳稳态动力响应分析[J]. 舰船科学技术, 2000 (6): 1-5.
[18]左言言, 宫镇. 圆柱壳受激振动的分析研究[J]. 农业机械学报, 1998, 29(1): 88-93.
[19] 陈正翔, 江松青. 圆柱壳中结构振动波的传播特性[J]. 振动工程学报, 1998, 11(4): 450-456.
Chen Zhengxiang, Jiang Songqing. Dispersion characteristics of structure vibration waves in cylindrical shells [J]. Journal of vibration Engineering, 1998, 11(4): 450-456.
[20] J.M. Santiago, H.L. Wisniewski, Convergence of finite element frequency prediction for a thin walled cylinder [J]. Computers and Structures 32 (3/4) (1989) 745–759.

PDF(1157 KB)

818

Accesses

0

Citation

Detail

段落导航
相关文章

/