90°弯管存在下的供水管道泄漏定位研究

文静,张敏姿,张恒

振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 92-98.

PDF(1242 KB)
PDF(1242 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (6) : 92-98.
论文

90°弯管存在下的供水管道泄漏定位研究

  • 文静,张敏姿,张恒
作者信息 +

Water supply pipeline leakage location in the presence of 90° bend

  • WEN Jing,ZHANG Minzi,ZHANG Heng
Author information +
文章历史 +

摘要

90°弯管的存在会影响管道泄漏检测定位的性能,本文针对金属材质的管道,基于ANSYS平台分别以泄漏管和90°弯管为研究对象,利用数值方法对管道的流致振动进行计算和分析,在此基础上提出一种结合经验模态分解(Empirical mode decomposition,EMD)和样本熵的噪声抑制方法去除管道泄漏检测信号中的弯管噪声,以提高泄漏检测定位的精度。仿真分析及实验结果表明,EMD和样本熵结合去噪的方法能很好的抑制弯管噪声。

Abstract

The existence of 90° bend has a negative impact on the performance of pipeline leak dectection and location. For metal pipelines, the leaking pipeline model and 90° bend model were taken as investigated as objects based on the ANSYS simulation software for calculating and analysing the piping flowinduced vibration. And a 90° bend noise suppression method, combining the empirical mode decomposition(EMD) with the sample entropy, was proposed to wipe out the bend noise included in the leakage signal and to improve the accuracy of leak detection positioning. The simulation and experimental results show that the method proposed is suitable for the bend noise suppression .

关键词

泄漏检测;EMD;样本熵;90° / 弯管;ANSYS

Key words

leakage detection / EMD / sample entropy / 90° / bend / ANSYS

引用本文

导出引用
文静,张敏姿,张恒. 90°弯管存在下的供水管道泄漏定位研究[J]. 振动与冲击, 2018, 37(6): 92-98
WEN Jing,ZHANG Minzi,ZHANG Heng. Water supply pipeline leakage location in the presence of 90° bend[J]. Journal of Vibration and Shock, 2018, 37(6): 92-98

参考文献

[1] FUCHS H V, RIEHLE R. Ten years of experience with leak detection by acoustic signal analysis[J]. Applied Acoustics, 1991, 33(1):1-19.
[2] GAO, BRENNAN, MJ, et al. A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes[J]. Journal of Sound & Vibration, 2006, 292(3):552-570.
[3] ALMEIDA F, BRENNAN M, JOSEPH P, et al. On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: an experimental investigation.[J]. Sensors, 2014, 14(3):5595-5610.
[4] LI S, WEN Y, LI P, et al. Leak location in gas pipelines using cross-time–frequency spectrum of leakage-induced acoustic vibrations[J].Journal of Sound & Vibration, 2014, 333(17):3889-3903.
[5] 李丽, 沈壮志, 沈建中, 等. 90°弯管的流场中涡相互作用对声场的影响[J]. 陕西师范大学学报:自然科学版, 2014(5):27-31.
LI L,SHEN Z Z, SHEN J Z, et a1. The interactions between vortexes influence on the sound field in the flow field of 90° curved tube [J]. Journal of Shanxi Normal University (Natural Science Edition), 2014(5):27-31.
[6] 杨进, 文玉梅, 李平, 等. 非泄漏固定声源干扰下的管网泄漏定位技术研究[J]. 仪器仪表学报, 2012, 33(2):248-254.
YANG J, WEN Y M, LI P, et a1. Research on leak location in the presence of non-leak noises in water distribution pipelines [J].Chinese Journal of Scientific Instrument, 2012, 33(2):248-254.
[7] 文玉梅, 由原, 杨进, 等. 固定干扰源存在下的管道泄漏检测和准确定位[J]. 声学学报, 2013(01):80-84.
WEN Y M, YOU Y, YANG J, et a1. Leak detection and accurate location in the presence of fixed source of interference [J].ACTA ACUSTICA, 2013(01):80-84.
[8] 龚斌, 刘喜兴, 杨帅, 等. 90°圆形截面弯管内流动的大涡模拟[J]. 过程工程学报, 2013,13(5):760-765.
GONG B, LIU X, YANG S, et a1. Simulation on Large Eddy Turbulent Flow in a Circular-sectioned 90o Bend [J].The Chinese Journal of Process Engineering, 2013,13(5):760-765.
[9] 王福军. 计算流体动力学分析[M]. 清华大学出版社, 2004.
[10]  杨进. 供水管道泄漏检测定位中的信号分析及处理研究[D]. 重庆大学, 2007.
[11] 冯雪松, 文玉梅, 甄锦鹏, 等. 管道泄漏声振动信号的特征分析[J]. 声学技术, 2015, 34(5):413-418.
FENG X, WEN Y, ZHEN J, et a1. Feature analysis of pipeline leakage acoustic signals for leak identification [J]. Technical Acoustics, 2015, 34(5):413-418.
[12] 戚定满. 空泡溃灭及空化噪声研究[J]. 力学季刊, 1999(1):1-9.
QI D M. Empty bubble breaking and cavitation noise research [J]. Chinese Quarterly of Mechanics, 1999(1):1-9.
[13] Hurst J M. Note on the motion of fluid in a curved pipe[J]. Mathematika, 1959, 6(1):77-85.
[14] Sudo K, Sumida M, Hibara H. Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend[J]. Experiments in Fluids, 1998, 30(3):246-252.
[15] Kim J, Yadav M, Kim S. Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2):229-239.
[16] R. Röhrig, S. Jakirli, C. Tropea. Comparative computational study of turbulent flow in a 90° pipe elbow[J]. International Journal of Heat & Fluid Flow, 2015, 55.
[17] 江山, 张京伟, 吴崇健, 等. 基于FLUENT的90°圆形弯管内部流场分析[J]. 中国舰船研究, 2008, 3(01):37-41.
JIANG S,ZHANG J W,WU C J, et a1. Numerical Simulation of Inner Flow in 90° Bending Duct of Circular-Section Based on FLUENT [J]. Chinese Journal of Ship Research, 2008, 3(01):37-41.
[18] 湛含辉, 朱辉, 陈津端, 等. 90°弯管内二次流(迪恩涡)的数值模拟[J]. 锅炉技术, 2010, 41(4):1-5.
ZHAN H H, ZHU H, CHEN J D, et a1. Numerical Simulation of Secondary Flow (Dean Vortices) in 90° Curved Tube [J]. Boiler Technology, 2010, 41(4):1-5.
[19] 董志勇. 弯头(弯管)阻力系数比较与流动特性分析[C]. 全国水动力学研讨会. 2001.
DONG Z Y. Elbow(bend) resistance coefficient and flow characteristic analysis[c]. The hydrodynamics seminar. 2001.
[20] Pincus S M. Approximate entropy as a measure of system complexity.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6):2297-301.
 

PDF(1242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/