为了提升复合材料锥形圆管的吸能效力,使复合材料吸能构件在工程应用中达到最佳吸能效果,研究了复合材料锥形圆管的结构优化,探索了不同锥度(α)与层数(N)的比值(α/N)对比吸能(SEA)和初始峰值载荷(Pinitial)的影响,发现随着α/N值的增大,比吸能(SEA)和初始峰值载荷(Pinitial)均减小;当α/N超过0.54时,锥管在压溃过程中不再发生内外分层。根据优化结果试制复合材料锥管,试验结果表明:优化后的锥管,SEA 从67.9 J/g增加到了78.50 J/g,提高了15.6%;Pinitial从52.3KN减少到了25.2KN,降低了51.8%;质量从55.3g减少到了42.9g,减轻了22.4%。
Abstract
In order to improve energy absorption abilities of carbon-fiber composite cone tubes to make composite energy-absorbing components achieve the best effect of energy-absorbing in engineering applications, the structural optimization of composite cone tubes was investigated. The influences of ratio (α/N) of conical degree (α) to number of ply(N) on the specific energy absorption (SEA) and the initial peak impact load (Pinitial) were studied. It was shown that with increase in α/N, SEA and Pinitial are both reduced; when α/N exceeds 0.54, the delamination no longer occurs in crushing process. Finally, a composite cone tube was manufactured according to the optimization results,the optimal results were validated with tests. Test results showed that after optimization, the tube’s SAE increases 15.6% (from 67.9 J/g to 78.50 J/g), its Pinitial decreases 51.8% (from 52.3KN to 25.2KN), its mass decreases 22.4% (from 55.3g to 42.9g).
关键词
复合材料 /
锥形圆管 /
吸能 /
优化
{{custom_keyword}} /
Key words
composite /
cone tube /
energy absorption /
optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bannerman D C,Kindervater M.Crash impact of simulated composite and aluminum helicopter fuselage elments[J].Vetica,1986,10(2):201-211.
[2] Avalle M, Chiandussi G. Optimisation of a vehicle energy absorbing steel component with experimental validation[J]. International Journal of Impact Engineering, 2007, 34(4):843-858.
[3] 洪武, 徐迎, 金丰年,等. 薄壁圆锥管轴向压缩吸能特性研究[J]. 振动与冲击, 2015, 34(5):88-94.
HONG Wu,XU Ying,JIN Feng-nian,et al.Energy absorbing characteristics of tapered circular tubes under axial compression[J].Journal of Vibration and Shock,2015,34(5):88-94.
[4] Zarei H, Kröger M, Albertsen H. An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes[J]. Composite Structures, 2008, 98(3):245-257.
[5] Boria S, Pettinari S, Giannoni F. Theoretical analysis on the collapse mechanisms of thin-walled composite tubes[J]. Composite Structures, 2013, 103(9):43-49.
[6] Boria S, Scattina A, Belingardi G. Axial energy absorption of CFRP truncated cones[J]. Composite Structures, 2015, 130(5):18-28.
[7] Kathiresan M, Manisekar K, Manikandan V. Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression[J]. Composite Structures, 2014, Volume 108(February 2014):584-599.
[8] Shuyong Duan, Yourui Tao, Xu Han ,et al. Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials[J]. Composites: Part B,2014,60, 471–478.
[9] Hou S, Li Q, Long S, et al. Multiobjective optimization of multi-cell sections for the crashworthiness design[J]. International Journal of Impact Engineering, 2008, 35(11):1355-1367.
[10] Huang J, Wang X. Numerical and experimental investigations on the axial crushing response of composite tubes[J]. Composite Structures, 2009, 91(2):222-228.
[11] Shujuan Hou, Qing Li, Shuyao Long, et al. Multiobjective optimization of multi-cell sections for the crashworthiness design[J].INTERNATIONAL JOURNAL OF IMPACT ENGINEERING,2008,35(11): 1355-136
[12] Hadavinia H, Ghasemnejad H. Effects of Mode-I and Mode-II interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J]. Composite Structures, 2009, 89(2):303-314.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}