基于离散元法的散体道床与基床表层耦合变形机理研究

高 亮 1,殷 浩 1,徐 旸 1,杨国涛 1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 186-192.

PDF(4465 KB)
PDF(4465 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 186-192.
论文

基于离散元法的散体道床与基床表层耦合变形机理研究

  • 高 亮 1,殷 浩 1,徐 旸 1,杨国涛 1,2
作者信息 +

Mechanism of ballast bed-bedding surface coupled deformation based on DEM

  •   GAO Liang 1,  YIN Hao 1,  XU Yang 1,Yang Guo-tao 1,2
Author information +
文章历史 +

摘要

基于真实道砟颗粒外形,采用离散元法建立了能真实模拟道砟颗粒间、道床与轨排之间、道床与基床表层之间耦合作用机理的轨枕-道床-基床表层精细化耦合模型。基于验证后的模型,对高速运营条件下轨道结构受力特性、弹性和塑性变形机理以及轨道沉降中道床和路基沉降所占比例进行深入研究。结果表明:轨道内接触力呈锥台状向下传递,在锥台形状断层处以斜面形式向斜下方延伸;存在道砟与基床表层碎石相互入侵现象,轨道沉降中道床沉降所占比例为83.9%~86.8%;轨道垂向弹性和塑性变形量、轨道沉降中道床沉降所占比例均会随着行车速度、列车轴重的增大而非线性增加。

Abstract

A sleeper-ballast-bedding surface coupled model was established with DEM to simulate the coupled action mechanism of ballast-ballast, ballast-sleeper, and ballast-bedding surface based on realistic appearance of ballast. The track structure loads-bearing characteristics, elastic and plastic deformation mechanism, and ballast bed/ bedding surface’s proportion under the condition of high-speed operation were studied deeply based on the model verified. The results showed that the track contact force shaped like a frustum is passed down, it extends below the syncline as a bevel; there are mutual invason phenomena of ballast-bedding surface, the proportion of ballast bed settlement is 83.9%~86.8%; track vertical elastic and plastic deformations and the proportion of ballast bed settlement increase nonlinearly with increase in train speed and train axle loads; the effects of train speed on track vertical deformation exceed those of train axle loads.

关键词

散体道床 / 基床表层 / 变形机理 / 力学特性 / 离散元法

Key words

ballast bed / bedding surface / deformation mechanism / mechanical characteristics / discrete element method (DEM)

引用本文

导出引用
高 亮 1,殷 浩 1,徐 旸 1,杨国涛 1,2. 基于离散元法的散体道床与基床表层耦合变形机理研究[J]. 振动与冲击, 2018, 37(7): 186-192
GAO Liang 1, YIN Hao 1, XU Yang 1,Yang Guo-tao 1,2. Mechanism of ballast bed-bedding surface coupled deformation based on DEM[J]. Journal of Vibration and Shock, 2018, 37(7): 186-192

参考文献

[1] 佐藤吉彦,周柔琴.新轨道破坏理论[J].铁道建筑, 1980,01:25-27.
[2] 平野雅之,周柔琴.采用新轨道破坏理论试算轨道下沉量 [J].铁道建筑,1981,06:31-36.
[3] 曾树谷.铁路散粒体道床[M].北京:中国铁道出版社,1997.
[4] 胡仁伟,王红,赵国堂.道碴动三轴试验研究[J].中国铁道科学,2001,22(2):101-106.
HU Ren-wei, WANG Hong, ZHAO Guo-tang. Study on Dynamic Triaxial Test and Accumulated Deformation of Ballast [J]. China Railway Science, 2001,22(2):101-106.
[5] 王红.道碴弹性与累积变形的试验研究[J].中国铁道科学,2001,22(6):106-110.
WANG Hong. Test and Study on Ballast Elasticity and Accumulated Deformation [J]. China Railway Science, 2001, 22(6):106-110.
[6] Mohammad Firuziaan, Otto von Estorffli. Simulation of The dynamic behaviour of bedding-foundation soil in The time domain [J]. System dynamics and long-term behaviour of railway vehicles, Track and subgrade. 2003,6:357-374.
[7] P. A. Ferreira, A. López-Pita. Numerical Modeling of High-Speed Train/Track System to Assess Track Vibrations and Settlement Prediction [J]. Journal of Transportation Engineering, 2013,139(3):330-337.
[8] 高建敏,翟婉明,徐涌.有碴轨道下沉变形参数影响分析[J].交通运输工程学报,2007,7(4):15-20.
GAO Jian-min, ZHAI Wan-ming, XU Yong. Analysis of Parameters' Effects on Settlement of Ballasted Track [J]. Journal of Traffic and Transportation Engineering, 2007,7(4): 15-20.
[9] 徐鹏,蔡成标.列车-有砟轨道-路基空间耦合动力学模型[J].工程力学,2011,28(3):191-197.
XU Peng, CAI Cheng-biao. Spatial Dynamic Model of Train-Ballast Track-Subgrade Coupled System[J]. Engineering Mechanics, 2011,28(3):191-197.
[10] 徐旸,高亮,杨国涛等.道砟颗粒的精细化建模及对道床力学性能影响[J].铁道学报,2014,36(9):73-78.
XU Yang, GAO Liang, YANG Guo-tao, et al. Fine Modelling of Ballast Grains and Influence on Mechanical Properties of Track Bed [J]. Journal of the China Railway Society, 2014,36 (9):73-78.
[11] 付龙龙,宫全美,周顺华等.列车荷载作用下有砟轨道轨面沉降与路基不均匀沉降间的相关关系[J].振动与冲击, 2013,32(14):23-28.
FU Long-long, GONG Quan-mei, ZHOU Shun-hua, et al. Relationships between ballasted track settlement and differential subgrade settlement under train load [J]. Journal of Vibration and Shock, 2013,32(14):23-28.
[12] 王平,万复光.铁路碎石道床弹性特性研究初探[J].铁道学报,1997,19(4):108-114.
WANG Ping, WAN Fu-guang. Research on the Elasticity of Ballast [J]. Journal of the China Railway Society, 1997,19(4): 108-114.
[13] 中华人民共和国铁道部. TB10621-2014高速铁路设计规范[S].北京:中国铁道出版社,2014.
[14] LIM W L. Mechanics of railway ballast behavior [D]. Nottingham: University of Nottingham.2004.
[15] M. Lu, G. R. McDowell. The importance of modelling ballast particle shape in the discrete element method [J]. Granular Matter,2007,9(1):69-80.
[16] Aursudkij B, G. R. McDowell, Collop A C. Cyclic loading of railway ballast under triaxial conditions and in a railway test facility [J].Granular Matter, 2009(11): 391-401.
[17] USACE (U.S. Army Corps of Engineers) Railroad design and construction [M]. Track design manual, Washington, DC, 2000.
[18] Jeffs, Tew. A review of track design procedures: Sleepers and ballast [M]. Railways of Australia, Melbourne, Australia, 1991.
[19] Sun Q D, Indraratna B, Nimbalkar S. Deformation and Degradation Mechanisms of Railway Ballast under High Frequency Cyclic Loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016,142(1).
[20] 董亮,赵成刚,蔡德钩等. 高速铁路路基的动力响应分析方法[J].工程力学,2008,25(11):231-240.
DONG Liang, ZHAO Cheng-gang, CAI De-gou, et al. Method for dynamic response of subgrade subjected to high-speed moving load[J]. Engineering Mechanics, 2008,25(11):231-240.

PDF(4465 KB)

439

Accesses

0

Citation

Detail

段落导航
相关文章

/