基于IMS聚类算法的柴油发动机故障诊断方法研究

李晓博1 江志农1 张沛2 钱迪2 薛继旭2 郑会2 张进杰1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 193-198.

PDF(1232 KB)
PDF(1232 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 193-198.
论文

基于IMS聚类算法的柴油发动机故障诊断方法研究

  • 李晓博1 江志农1 张沛2 钱迪2 薛继旭2 郑会2 张进杰1
作者信息 +

Fault diagnosis approach for diesel engines based on IMS clustering algorithm

  • LI Xiao-bo1JiangZhinong1Zhang Pei1  Qian Di1Xue Jixu1  Zheng Hui1 ZHANG JINjie1
Author information +
文章历史 +

摘要

将IMS聚类算法引入柴油发动机故障诊断中,首先对柴油机各工况振动信号进行特征提取,之后对提取的信号特征进行选择。最后建立IMS聚类算法模型,将提取到的特征量作为该模型的输入参数,实现发动机故障的智能诊断。实验研究在一台V6涡轮增压柴油发动机上进行,以获取训练和验证IMS聚类算法模型的数据。经过数据验证,该模型对于故障的判断全部正确。当前的研究为柴油发动机故障的诊断提出了一个新的检测途径。

Abstract

Here, the IMS clustering algorithm was used to study fault diagnosis of diesel engines. Firstly, vibration signal features of a diesel engine were extracted, these features were selected. Finally, an IMS clustering algorithm model was established, the features extracted from fault data were taken as the model’s input parameters to realize diesel engine faults’ intelligent diagnosis. Test study was performed on a V6 turbocharged diesel engine to get data for both training purposes and verifying the IMS clustering algorithm model. Through verification of data, it was shown that judgements of the model for faults are correct. The study provided a new detecting way for fault diagnosis of diesel engines.


关键词

IMS聚类算法 / 柴油发动机 / 故障诊断 / 特征提取

Key words

IMS clustering algorithm / diesel engine / fault diagnosis / feature extraction

引用本文

导出引用
李晓博1 江志农1 张沛2 钱迪2 薛继旭2 郑会2 张进杰1. 基于IMS聚类算法的柴油发动机故障诊断方法研究[J]. 振动与冲击, 2018, 37(7): 193-198
LI Xiao-bo1JiangZhinong1Zhang Pei1 Qian Di1Xue Jixu1 Zheng Hui1 ZHANG Jinjie1. Fault diagnosis approach for diesel engines based on IMS clustering algorithm[J]. Journal of Vibration and Shock, 2018, 37(7): 193-198

参考文献

[1] 胡以怀,万碧玉,詹玉龙. 柴油机性能故障仿真及信息特征分析[J]. 内燃机学报, 1999, 17(3):233-240.
HU Yi-huai, WAN Bi-yu, ZHAN Yu-long. Performance Faults Simulation and Informational Character Analysis of Diesel Engines [J].Transactions of CSICE, 1999, 17(3):233-240.
[2] 向志伟, 张晖, 王斌. 油液监测技术在船用柴油机故障诊断中的应用[J]. 润滑与密封, 2009, 34(4):108-110.
XIANG Zhi-wei, ZHANG Hui, WANG Bin. The Application of Oil Monitoring Techniques in the Failure Diagnosis of Ship Diesel Engine [J].Lubrication Engineering, 2009, 34(4):108-110.
[3]李国宾, 关德林, 李廷举. 基于小波包变换和奇异值分解的柴油机振动信号特征提取研究[J]. 振动与冲击, 2011, 30(8):149-152.
LI Guo-bin, GUAN De-Lin, LI Ting-ju. Feature extraction of diesel engine vibration signal basedon wavelet packet transform and singularity value decomposition [J]. Journal of vibration and shock, 2011, 30(8):149-152.
[4]Nyberg M. Model-based diagnosis of an automotive engine using several types of fault models[J]. IEEE Transactions on Control Systems Technology, 2002, 10(5):679-689.
[5]刘海, 张俊红, 倪广健. 基于遗传支持向量机的柴油机辐射噪声品质预测技术[J]. 振动与冲击, 2013, 32(2):111-114.
LIU Hai, ZHANG Jun-hong, NI Guang-jian. Sound quality prediction of Diesel engine noisebased on genetic algorithm and support vector machine [J]. Journal of vibration and shock, 2013, 32(2):111-114.
[6]赵慧敏, 梅检民, 肖云魁,等. 基于双谱和变精度粗糙集理论的柴油机故障特征自动提取[J]. 振动与冲击, 2011, 30(6):223-228.
ZHAO Hui-min, MEI Jian-min, XIAO Yun-kui. Automatic extraction of fault features for diesel engine based on bispectrum approach and variable precision rough set theory[J]. Journal of vibration and shock, 2013, 32(2):111-114.
[7]刘应吉, 张天侠, 闻邦椿. 基于自适应模糊推理系统的柴油机故障诊断[J]. 系统仿真学报, 2008(21):5836-5839.
LIU Ying-ji, ZHANG Tian-xia, WEN Bang-chun. Fault Diagnosis of Diesel Engine Based on ANFIS [J]. Journal of System Simulation, 2008(21):5836-5839.
[8]吴欠欠, 王直, 董贺. 故障树分析法在船舶柴油机故障诊断中的应用研究[J]. 机械设计与制造, 2009(1):77-78.
WU Qian-qian, WANG Zhi, DONG He. Fault tree analysis and its application to marine diesel fault analysis [J].JOURNAL OF DALIAN MARITIME UNIVERSITY, 2009(1):77-78.
[9]范荫, 王学合, 孟昭昕. 柴油机工作过程故障灰色诊断专家系统[J]. 内燃机工程, 2000, 21(2):5-10.
FAN Yin, WANG Xue-he, MENG Zhao-xin.Fault Gray Diagnosis Expert System for Working Cycle of Diesel Engine[J]. Chinese Internal Combustion Engine Engineering, 2000, 21(2):5-10.
[10]David L, Iverson. “Inductive Monitoring System Constructed from Nominal System Data and Its Use in Real-time System Monitoring”: US,7383238B1 [P],2008 June.
[11]Schwabacher M, Oza N, Matthews B. Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring [J]. Journal of Aerospace Computing Information & Communication, 2009, 6(7):464-482.
[12]何正嘉,陈进,王太勇.机械故障诊断理论及应用[M].北京:高等教育出版社,2010.
HE Zheng-jia, CHEN Jin, WANG Tai-yong. Theory and Application of Machinery Fault Diagnostics [M].Beijing: Higher Education Press, 2010.
[13]裴峻峰, 齐明侠, 杨其俊. 机械故障诊断技术[M]. 中国石油大学出版社, 2010.
PEIJun-feng, Qi Ming-xia, YANG Qi-jun. Technology of Mechanical Fault Diagnosis [M].Beijing: China University of Petroleum Press, 2010.
[14] 段礼祥, 张来斌, 王朝晖. 柴油机状态监测与故障诊断特征参数研究[J]. 车用发动机, 2007(1):76-79.
DUAN Li-xiang, ZHANG Lai-bin, WANG Zhao-hui. Characteristics Research on ConditionMonitoring and Fault Diagnosis of Diesel Engine [J]. Vehicle Engine, 2007(1):76-79.
[15] 王媛媛. 合理利用空间信息的模糊C均值脑部MR图像分割算法研究[D]. 西安电子科技大学, 2012.
WANG Yuan-yuan. The study of fuzzy C-means algorithm incorporating spatial information for brain MR image segmentation [D]. Xidian University, 2012.
[16] Fukuyama Y, Sugeno M, Fukuyama Y, et al. A New Method of Choosing the Number of Clusters for the Fuzzy c-Means Method[J]. Proceedings of Fifth Fuzzy System Symposium, 1989.
[17] 刘洪刚, 魏鹏飞, 谢廷峰,等. 液体火箭发动机地面试车过程的实时故障检测方法研究[J]. 宇航学报, 2007, 28(6):1660-1663.
LIU Hong-gang, WEI Peng-fei, XIE Ting-feng. Space Targets Detection and Imaging Based on Space borneMillimeter-wave Radar [J]. Journal of Astronautics, 2007, 28(6):1660-1663.

PDF(1232 KB)

Accesses

Citation

Detail

段落导航
相关文章

/