主动轮是履带车辆底盘系统的重要传动部件,其强度具有一定的不确定性,且在实际运行过程中其强度是随时间逐渐退化的,采用Gamma随机过程描述机械零部件的强度退化过程,运用基于随机摄动法和四阶矩理论的可靠性数值分析法,讨论了机械系统零部件随机参数在非正态分布时的灵敏度分析问题,运用矩阵微分法推导了机械零部件随机变量均值和方差的灵敏度计算公式,进而以履带车辆的主动轮为例,运用所提方法进行计算验证,计算结果表明该方法可以有效解决机械零部件强度退化时可靠性的灵敏度分析问题。研究成果可以推广到相关机械可靠性优化设计领域,具有十分重要的实用意义。
Abstract
Drive wheel is an important transmission component in a tracked vehicle chassis system, its strength has a certain uncertainty and is degenerative with time in actual operation process. Here, Gamma random process was used to describe the strength degradation process of mechanical components. Matrix differential method was used to derive sensitivity calculation formulas for mean and variance of mechanical components’ random variables. Taking drive wheel of a tracked vehicle as an example, the proposed method was verified. The results showed that the proposed method can effectively solve the sensitivity analysis problem for the reliability of mechanical components with strength degradation; the study results can be extended to the related machinery reliability optimal design fields with some practical significance.
关键词
机械系统 /
Gamma退化过程 /
四阶矩技术 /
灵敏度分析
{{custom_keyword}} /
Key words
mechanical system /
Gamma degenerative process /
fourth moment /
sensitivity analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张义民,吕昊. 考虑载荷作用次数的机械零部件可靠性灵敏度分析方法[J]. 工程设计学报,2014, 21(2):119-123.
ZHANG Yi-min, LU Hao. An analytical methodology of reliability and sensitivity analysis for mechanical components considering the times of load action[J]. Chinese Journal of Engineering Design, 2014, 21(2):119-123.
[2] 王正,谢里阳,李兵. 考虑载荷作用次数的零部件可靠性模型[J]. 机械强度,2008, 30(1): 68-71.
WANG Zheng, XIE Li-yang, LI Bing. Reliability model of component considering times of random load acting[J]. Journal of Mechanical Strength, 2008, 30(1): 68-71.
[3] 岳玉梅,王正,谢里阳. 考虑载荷作用次数的齿轮可靠度计算模型[J]. 东北大学学报(自然科学版),2008,29(12):1754-1756.
YUE YU-mei, WANG Zheng, XIE Li-yang. Reliability Calculation Model of a Gear Considering Frequency of Random Loading Actions[J]. Journal of Northeastern University(Natural Science), 2008, 29(12):1754-1756.
[4] 贺向东,张义民,闻邦椿. 连续梁弯非正态分布参数的压杆稳定可靠性灵敏度设计[J]. 宇航学报,2007, 28(5):1401-1404.
HE Xiang-dong, ZHANG Yi-min, WEN Bang-chun. Stable Reliability Sensitivity Design of Compressive Bar With Non-Normal Distribution Parameters [J]. Journal of Astronautics, 2007, 28(5):1401-1404.
[5] Lew is E E. A load-capacity interference model for common-model failures in 1-out-of-2: G system[J]. IEEE Transaction on Reliability, 2001, 50(1):47-51.
[6] LI Jian-ping, Thompson G. A Method to Take Account of in- homogeneity in Mechanical Component Reliability Calculations[J]. IEEE Transactionon Reliability, 2005, 54(1): 159-168.
[7] Ove Ditlevsen. Stochastic Model for Joint Wave and Wind Loads on Offshore Structures[J].Structural Safety, 2002, 24: 139-163.
[8] 宋军,吕震宙. 可靠性灵敏度分析的一种新方法[J]. 航空学报,2010, 29(1): 193-195.
SONG Jun, LU Zhen-zhou. A New Reliability Sensitivity Analysis Method [J]. Acta Aeronautica Et Astronautica Sinica, 2006, 27(5):823-826.
[9] Noortwijk V J M.A survey of the application of Gamma processes in maintenance[J].Reliability Engineering and System Safety, 2009, 94(1): 2-21.
[10] 吕春梅,张义民,刘宇,周娜. 连续梁弯曲振动系统可靠性频率灵敏度研究[J]. 振动与冲击,2013, 32(18):159-162.
LU Chun-mei, ZHANG Yi-min, LIU Yu, ZHOU Na. Sensitivity analysis for frequency reliability of a random bending vibration system of continuous beam [J]. Journal of vibration and shock, 2013, 32(18): 159-162.
[11] 黄益民,刘伟,刘永寿,岳珠峰. 充液管道模态的参数灵敏度及其共振可靠性分析[J]. 振动与冲击,2010, 29(1): 193-195.
HUANG Yi-min, LIU Wei, LIU Yong-shou, YUE Zhu-feng. Parameter sensitivity and resonance reliability of a fluid-filled pipeline [J]. Journal of vibration and shock, 2010, 29(1): 193-195.
[12] 李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报, 2012, 32(4): 455~459.
LI Yun-gui, ZHAO Guo-fan. Fourth-moment Technique on Structure Reliability[J]. Journal of Dalian university of technology, 2012, 32(4): 455~459.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}