基于波传播方法和多元分析的正交各向异性圆柱壳振动特性研究

汪志强,李学斌,黄利华

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 227-232.

PDF(1020 KB)
PDF(1020 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 227-232.
论文

基于波传播方法和多元分析的正交各向异性圆柱壳振动特性研究

  • 汪志强,李学斌,黄利华
作者信息 +

Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis

  • WANG Zhiqiang , LI Xuebin , HUANG Lihua
Author information +
文章历史 +

摘要

采用Flügge经典薄壳理论和波传播方法讨论了正交各向异性圆柱壳的自由振动问题。波传播法利用梁边界简化对应圆柱壳的边界条件,自由振动问题转换为求解关于圆频率的6次方程。通过参数化求解过程,获得了一定范围下正交各向异性圆柱壳自由振动的解空间。针对该空间应用多元统计方法讨论了圆柱壳的几何参数、材料特性参数对于频率的影响,分析了这些参数和频率的关联程度。基于方差分析讨论这些因素对频率的影响重要程度,并采用自组织映射技术研究了解空间的特性。本文给出的方法具有一般性,能够考虑正交各向异性圆柱壳在复杂边界和受外力的情况。

Abstract

 Free vibration of orthotropic circular cylindrical shells was studied based on Flügge classical thin shell theory and the wave propagation approach. The shells’ boundary conditions were simplified using those of beams. The free vibration problem of the shells was converted into a 6-order algebraic equation for natural frequencies to be solved. Through parametrically solving the solution space for free vibration of orthotropic cylindrical shells was obtained. The multivariate statistical method was used to analyze effects of geometric parameters and material feature parameters of the shells on their natural frequencies, and correlations among these parameters and natural frequencies. ANOVA was used to discuss influence levels of these parameters on natural frequencies. A knowledge and data visualization approach named Self-Organizing Mapping (SOM) was adopted to study features of the solution space. A numerical example was presented here. The study provided a general method for further studying vibration characteristics of orthotropic circular cylindrical shells with complicated boundary conditions and external loads.

关键词

正交各向异性圆柱壳 / 自由振动 / 关联性分析 / 方差分析 / 自组织映射

引用本文

导出引用
汪志强,李学斌,黄利华. 基于波传播方法和多元分析的正交各向异性圆柱壳振动特性研究[J]. 振动与冲击, 2018, 37(7): 227-232
WANG Zhiqiang,LI Xuebin,HUANG Lihua . Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis[J]. Journal of Vibration and Shock, 2018, 37(7): 227-232

参考文献

 [1] Leissa A W. Vibration of Shells  (NASA SP 288), NASA SP 288[R]. Washington DC: US Government Printing Office, 1993.
 [2] 赵鑫, 张博, 李跃明. 不同边界条件下截顶正交各向异性圆锥壳的振动和声辐射研究[J]. 振动与冲击, 2016,35(3):99-106.
ZHAO Xin,ZHANG Bo,LI Yue-ming.Influences of boundary conditions on the vibration and sound radiation of a truncated orthotropic conical shell[J].Journal of Vibration and Shock,2016,35(3):99-106.
 [3] Liu B, Xing Y F, Qatu M S, et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures, 2012,94:484-493.
 [4] 李学斌. 正交各向异性圆柱壳的稳态动力响应分析[J]. 船舶力学, 2007,11(1):79-87.
     LI Xuebin. Hairmonic response analysis of orthotropic cylindrical shells. Journal of Ship Mechanics, 2007,11(1):79-87.
 [5] Xuebin L. Study on free vibration analysis of circular cylindrical shells using wave propagation[J]. Journal of Sound and Vibration, 2008,311:667-682.
 [6] 马成良, 张海军, 李素平. 现代试验设计优化方法及应用[M]. 郑州: 郑州大学出版社, 2007.
 [7] Johnson R A, Wichern D W. Applied multivariate statistical analysis[M]. 6th. New Jersey: Prentice Hall, 2007.
 [8] Kohonen T. Self-Organizing Maps[M]. 3. Berlin: Springer-Verlag, 2001.
 [9] Flügge. Stresses in Shells[M]. Berlin: Springer-Verlag, 1973.
[10] 季文美, 方同, 陈松淇. 机械振动[M]. 北京: 科学出版社, 1985.
[11] Härdle W K, Simar L. Applied Multivariate Statistical Analysis[M]. Berlin Heidelberg: Springer-Verlag, 2012.
[12] Degroot M H. Probability and Statistics[M]. Wokingham, England: Addison-Wesley Publishing Company, 1989.
[13] 高慧璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005.
[14] Mwasiagi J I. Self Organizing Maps - Applications and Novel Algorithm Design[M]. Rijeka, Croatia: InTech, 2011.
[15] Warburton G B, Soni S R. Resonant response of orthotropic cylindrical shells[J]. Journal of Sound and Vibration, 1977,53(1):1-23.
[16] 李学斌. 正交各向异性圆柱壳静动态特性分析及比较研究[D]. 武汉: 华中科技大学, 2004.
[17] Gan L, Li X, Zhang Z. Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach[J]. Journal of Sound and Vibration, 2009,326:633-646.
[18] Timm N H. Applied multivariate analysis[M]. New York: Springer-Verlag, 2001.
[19] Vesanto J, Himberg J, Alhoniemi E, et al. Self-Organizing Map in Matlab:the Som Toolbox: Proceedings of the Matlab DSP Conference, Espoo, Finland, 1999[C].
 

PDF(1020 KB)

Accesses

Citation

Detail

段落导航
相关文章

/