基于协整理论的环境温湿度效应下连续梁桥频率修正方法

何浩祥1,2,张小福1,王小兵1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 23-31.

PDF(2352 KB)
PDF(2352 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 23-31.
论文

基于协整理论的环境温湿度效应下连续梁桥频率修正方法

  • 何浩祥1,2,张小福1,王小兵1
作者信息 +

Frequency modification of continuous beam bridges based on co-integration theory under effects of temperature and humidity

  • HE Hao-xiang1,2,  ZHANG Xiao-fu1,  WANG Xiao-bing1
Author information +
文章历史 +

摘要

环境温度和湿度效应及其变化导致工程结构的模态参数有明显的波动和时变特性。目前关于温度对桥梁频率影响和相关量化统计方法不能完全反映多环境因素综合作用下的结构动力性能和时变频率特性。利用协整理论能够量化多个非平稳序列之间长期均衡关系的能力,对自然环境下三跨混凝土桥梁模型的长期监测及数据分析,建立了基于协整理论的“温度—湿度—频率”长期均衡模型,研究了温度和湿度对结构频率的综合影响。结果表明该模型具有较好的拟合精度和预测能力,能充分反应环境温度和湿度对结构频率影响的本质特征。基于该协整模型,进一步提出了考虑多环境因素影响的桥梁频率修正模型,有效剔除环境温度和湿度对频率的影响,准确展现结构内因引起的动态特性改变,为桥梁损伤诊断和安全评估提供有效信息。
 

Abstract

Although there are many literatures about effects of temperature on bridge structures’ frequencies and related statistical methods, few studies reflect dynamic performance and time-varying frequency characteristics of bridge structures under the combined action of multi-environmental factors. Adopting the co-integration theory with the ability to quantify the long term balance relationship among multiple non-stationary sequences, a 3-span RC bridge model under natural environment were monitored and analyzed continuously, a model for long-term balance of temperature-humidity-frequency based on the co-integration theory was established to study the comprehensive effects of temperature and humidity on the bridge’s frequencies. The results demonstrated that the established model has a better fitting precision and a predictive ability, it can fully reflect essential characteristics of influences of temperature and humidity on bridge frequencies; based on this co-integration model, the bridge frequency modification model considering effects of multi-environmental factors is proposed to effectively eliminate effects of temperature and humidity on bridge frequencies, and accurately reveal bridge’s dynamic feature variation due to structures’ internal causes, it can provide effective information for bridge damage diagnosis and safety assessment.

关键词

频率
/ 协整理论 / 温度 / 湿度 / 钢筋混凝土桥梁 / 结构健康监测

Key words

 frequency / co-integration theory / temperature / humidity / reinforced concrete (RC) bridge / structural health monitoring

引用本文

导出引用
何浩祥1,2,张小福1,王小兵1. 基于协整理论的环境温湿度效应下连续梁桥频率修正方法[J]. 振动与冲击, 2018, 37(7): 23-31
HE Hao-xiang1,2, ZHANG Xiao-fu1, WANG Xiao-bing1. Frequency modification of continuous beam bridges based on co-integration theory under effects of temperature and humidity[J]. Journal of Vibration and Shock, 2018, 37(7): 23-31

参考文献

[1] Mi F, John E T P. The practical limits of damage detection and location using vibration data [A], 11th VPI&SU symposium on structural dynamics and control[C]. Blacksburg, Virginia, USA: VPI & SU, 1997,31-40.
[2] Peeters B, Maeck J, Deroeck G. Vibration-based damage detection in civil engineering: excitation sources and temperature effects[J]. Smart Materials & Structures, 2001, 10(3):518-527.
[3] Zhang D, Nagurney A. On the stability of projected dynamical systems [J]. Journal of Optimization Theory & Applications, 1995, 85(85):97-124.
[4] Nagurney A, Zhang D. Projected dynamical systems and variational inequalities with applications [M] Boston, Massachusetts: Kluwer Academic Publishers, 1996.
[5] 曾庆响,韩大建,马海涛. 预应力混凝土箱梁桥的温度效应分析[J]. 中南大学学报, 2010, 41(6): 2360-2366.
Zeng Qingxiang, Han Dajian, Ma Hai-Tao, et al. Analysis of temperature effects on prestressed concrete box girder bridges[J]. Zhongnan Daxue Xuebao, 2010, 41(6):2360-2366.
[6] Ariyawardena N, Ghali A, Elbadry M. Experimental study on thermal cracking in reinforced concrete member [J]. Structural Journal, 1997, 94(4): 432-441.
[7]  张元海, 李乔. 桥梁结构日照温差二次力及温度应力计算方法研究[J]. 中国公路学报, 2004, 11(1): 49-52.
Zhang Yuanhai, Li Qiao. Study of the method for calculation of the thermal stress and secondary force of bridge structure by solar radiation[J]. China Journal of Highway & Transport, 2004, 17(1):49-52.
[8] Xia Y, Hao H, Zanardo G, et al. Long term vibration monitoring of an RC slab: Temperature and humidity effect [J]. Engineering Structures, 2006, 28(3):441-452.
[9] 刘纲,邵毅敏,黄宗明. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学,2010, 27(3): 55-61.
Liu Gang, Shao Yimin, Huang Zongming. A new method for the separation of structure and temperature effect in long term monitoring[J]. Engineering Mechanics, 2010, 27(3):55-61.
[10] 皮少博. 变环境下的桥梁模态参数分析[D].哈尔滨工业大学,2015.
Pi Shaobo. Analysis of the modal parameters of bridge on various environmental conditions[D].  Harbin Institute of Technology,2015.
[11] 吕文娟. 考虑环境湿度影响的混凝土材料及结构动力性能研究[D]. 北京交通大学, 2015.
Lv Wenjuan. Study on the dynamic property of the concrete material and structure considering the ambient humidity[D]. Beijing Jiaotong University, 2015.
[12] 许永吉, 朱三凡, 宗周红. 环境温度对桥梁结构动力特性影响的试验研究[J]. 地震工程与工程振动. 2007, 27(6):119-123.
Xu Yongji, Zhu Sanfan, Zong Zhouhong. Experimental study on effects of environmental temperature on dynamic characteristics of bridge structures [J]. Journal of Earthquake Engineering & Engineering Vibration, 2007, 27(6):119-123.
[13] Peeters B, Roeck G D. One-year monitoring of the Z24-Bridge: environmental effects versus damage events[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(2):149–171.
[14] Ni Y Q, Hua X G, Fan K Q, et al. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique [J]. Engineering Structures, 2005, 27(12):1762-1773.
[15] 杨鸥, 刘洋, 李惠, 欧进萍. 时变环境与损伤耦合下桥梁结构频率及阻尼比的统计分析[J]. 计算力学学报. 2010, 27(3):457-462.
Yang Ou, Liu Yang, Li Hui, et al. Cable bridge modal parameter statistical analysis under the time varying environment coupled with damage[J]. Chinese Journal of Computational Mechanics, 2010, 27(3):457-462.
[16] 闵志华, 孙利民, 淡丹辉. 影响斜拉桥模态参数变化的环境因素分析[J].振动与冲击. 2009, 28(10):100-105.
Min Zhihua, Sun Linmin, Dan Danhui. Effect analysis of environmental factors on structural modal parameters of a cable-stayed bridge[J]. Journal of Vibration & Shock, 2009, 28(10):100-105.
[17] Engle R F, Granger C W J. Co-integration and Error Correction: Representation, Estimation, and Testing [J]. Econometrica, 1987, 55(2): 251-276.
[18] Banerjee A, Dolado J J, Galbraith J W, et al. Co-integration, error correction, and the econometric analysis of non-stationary data[J]. Economic Journal, 1993, 106(439):518-521.
[19] G. Janacek. Time series analysis forecasting and control[M] Holden-Day: Incorporated, 1990.
[20] Cross E J, Chen Q. Cointegration: a novel approach for the removal of environmental trends in structural health monitoring data [J]. Proceedings of the Royal Society A, 2011, 467(2133):2712-2732.
[21] Cross E J, Worden K. Approaches to nonlinear cointegration with a view towards applications in SHM[C]// 2011:12069-12078(10).
[22] Zolna, Konrad, Dao, Phong B, Staszewski, Wieslaw J, et al. Towards homoscedastic nonlinear cointegration for structural health monitoring[J]. Mechanical Systems & Signal Processing, 2016, 75(3):94-108.
[23] 高铁梅.计量经济分析方法与建模[M].北京:清华大学出版社,2006.
Gao Tiemei. Econometric analysis methods and modeling[M]. Beijing:Tsinghua University Press, 2006.
[24] 钟志威,雷钦礼.Johansen 和Juselius 协整检验应注意的几个问题[J]. 统计与信息论坛, 2008, 23(10): 80-85.
Zhong Zhiwei,Lei Qinli. Some notes on johansen and juselius cointegration test[J]. Statistics & Information Forum, 2008, 23(10): 80-85.
[25] Engle R F, Granger C W J. Co-integration and Error Correction: Representation, Estimation, and Testing.[J]. Econometrica, 1987, 55(2): 251-76.
[26] Johansen S.Statistical analysis of cointegration vectors [J]. Journal of Economic Dynamics and Control, 1988(12): 231-254.
[27] Johansen S,Juselius K M.Likelihood estimation and inferences oncointegration with applications to the demand for money [J]. Oxford Bulletin of Economic and Statistics, 1990(52):169-210.
[28] Kitamura Y. Likelihood-based inference in cointegrated vector, autoregressive models[J]. Econometric Theory, 1995, 14(4):517-524.
[29] Franses P H. How to Deal with Intercept and Trend in Practical Cointegration Analysis? [J]. Applied Economics, 1999, 33(EI 9904-/A): 577-579.
[30] 邓露,张晓峒.ADF 检验中滞后长度的选择:基于ARIMA(0,1,q)过程的模拟证据[J].数量经济技术经济研究, 2008(9): 126-137.
Deng Lu,Zhang Xiaotong.The lag length selection in ADF test:simulation evidence from an ARIMA(0,1,q) process[J]. The Journal of Quantitative & Technical Economics, 2008(9): 126-137.
[31] Pesaran M H, Shin Y, Smith R J. Structural analysis of vector error correction models with exogenous I (1) variables[J]. Journal of Econometrics, 2000, 97(2):293-34

PDF(2352 KB)

Accesses

Citation

Detail

段落导航
相关文章

/