基于拉格朗日方法建立考虑流固耦合效应的模态方程,利用ANSYS软件建立包含土层自由场地、桩基承台场地模型,刚性地基空罐、满罐、以及考虑土结相互作用的空罐和满罐等六个数值模型,得到工程场地的自振频率以及土体对罐体系统动力特性的影响。研究了各种模型自振频率和振型参与系数随阶数的分布情况。结果表明,桩基承台的存在使得场地第一阶振动频率有所增大。罐内液体的晃动频率不受土结相互作用的影响。考虑土结相互作用之后,出现了液体对流晃动频率、土-罐-液整体振动频率和罐液耦联振动频率等低、中、高三个振动频率,且前两阶频率罐液耦联振动频率有所减小,也更为密集。应考虑土结相互作用的影响,否则将会高估罐液耦联振动频率。最后运用子结构理论对考虑土结相互作用引起动力特性变化进行了解释,并给出了动力计算中考虑土结相互作用时罐液体系瑞利阻尼系数的选取建议。研究结论可为考虑土结相互作用储罐的地震响应分析提供参考。
Abstract
Based on Lagrange method, a modal equation of a storage tank considering fluid-solid coupled effect was established. 6 numerical models including soil free site, pile foundation platform model, rigid foundation empty tank, rigid foundation full tank as well as empty tank and full tank considering soil-structure interaction (SSI) were established with software ANSYS. Natural frequencies of the site and influences of soil-structure interaction on dynamic characteristics of a tank system were obtained using computation results of 6 numerical models. The distribution of natural frequencies and each modal shape’s participation coefficients of various models were studied. The results showed that the existence of pile foundation platform makes the site’s first order natural frequency increase; SSI does not affect the slosh frequency of liquid in tank; after considering SSI, 3 types vibration frequencies including liquid convective sloshing frequencies, soil-tank-liquid whole vibration frequencies and tank-liquid coupled vibration frequencies appear, the first two order tank-liquid coupled vibration frequencies decrease and are more dense; SSI effect should be considered otherwise tank-liquid coupled vibration frequencies are over-estimated. Finally, the sub-structure theory was used to explain changes of dynamic characteristics of a tank system due to considering SSI, the suggestion for choosing Rayleigh damping coefficient of a tank-liquid system considering SSI was given in dynamic calculation. The study conclusions provided a reference for seismic response analysis of storage tank systems considering SSI.
关键词
储罐 /
模态分析 /
动力特性 /
土结相互作用 /
罐液耦合
{{custom_keyword}} /
Key words
storage tank /
modal analysis /
dynamic characteristics /
SSI /
tank-liquid coupled vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程旭东,胡晶晶,徐剑. 大型储罐地震作用下罐壁抗失稳可靠度分析[J]. 中国石油大学学报(自然科学版),2011,35(3):140-143.
CHENG Xu-dong,HU Jing-jing,XU Jian. Reliability analysis on anti-buckling effect of large storage tank shell under earthquake[J]. Journal of China University of Petroleum,2011,35(3):140-143.
[2] HOUSNER G W. Dynamic pressure on accelerated fluid containers[J]. Bulletin of the seismological society of America,1957,47(1): 15-35.
[3] 刘帅,翁大根,张瑞甫. 圆柱形储罐考虑桩土相互作用地震响应的简化分析[J].力学季刊,2013, 34(1): 161-168.
LIU Shuai,WENG Da-gen,ZHANG Rui-fu. Seismic response simplified analysis of a cylindrical storage tank considering the soil-pile interaction [J]. Chinese Quarterly of Mechanic, 2013, 34(1): 161-168.
[4] 孙建刚,郝进锋,刘扬,等. 考虑摆动效应的立式储罐隔震分析简化力学模型[J]. 振动与冲击,2016,35(11):20-27.
SUN Jian-gang,HAO Jin-feng,LIU Yang, et al. Simplified mechanical model for vibration isolation analysis of a vertical storage tank considering swinging effect[J]. Journal of Vibration and Shock, 2016,35(11):20-27.
[5] 刘 帅,翁大根,张瑞甫. 软土场地大型LNG储罐考虑桩土相互作用的地震响应分析[J]. 振动与冲击(自然科学版), 2014,33(7):24-30.
LIU Shuai,WENG Da-gen,ZHANG Rui-fu. Seismic response analysis of a large LNG storage tank considering pile-soil interaction in a soft site[J]. Journal of Vibration and Shock, 2014, 33(7):24-30.
[6] 郑运虎,李 颖.立式圆柱薄壳容器的振动特性研究[J].西华大学学报( 自然科学版),2016,35(1):24-28.
ZHENG Yun-hu,LI Ying. Research on the Vibration Characteristics of Vertical Cylindrical Shell Container[J]. Journal of Xihua University(Natural Science) ,2016,35(1):24-28.
[7] 王金龙.大型储罐罐液耦合模态数值的模拟[J].济南大学学报( 自然科学版),2014,28(1):77-80.
WANG Jin-long. Numerical Simulation Liquid-Solid Coupling Modal Analysis of Large Storage Tank[J]. Journal of University of Jinan(Sci.&Tech.),2014,28(1):77-80.
[8] 赵晓磊,张荣花,张亮. 15×104m3浮放储罐的模态分析 [J].大连民族学院院报,2009,11(1):71-73.
ZHAO Xiao-lei, ZHANG Rong-hua, ZHANG Liang. Modal Analysis of Unanchored 15×104m3 Storage Tank[J]. Journal of Dalian Nationalities University, 2009,11(1):71-73.
[9] 楼梦麟,潘旦光,范立础. 土层地震反应分析中侧向人工边界的影响[J]. 同济大学学报:自然科学版, 2003, 31(7): 757-761.
LOU Meng-lin, PAN Dan-guang, FAN Li-chu. Effect of vertical artificial boundary on seismic response of soil layer[J]. Journal of Tongji University: Natural Science, 2003, 31(7): 757-761.
[10] Velersos A S, Yang J Y. Earthquake response of liquid storage tanks[C]. Advances Civil Engir. Through Engir. Mechanics// Proceedings of Annual EMD Specialty Conference, ASCE, Raleigh: 1977: 1-24.
[11] Udwadia F E, Tabaie S. Pulse control of single degree-of-freedom system[J]. Journal of the Engineering Mechanics Division, 1981, 107(6): 997-1009
[12] 中华人民共和国国家标准. GB 50341-2014立式圆筒形钢制焊接油罐设计规范[S]. 北京:中国计划出版社,2014.
National Standards of the People's Republic of China. Code for Design of Vertical Cylindrical Welded Steel Oil Tanks[S]. Beijing:China Planning Press,2014.
[13] 克拉夫 R,彭津 J著,王光远,等译校. 结构动力学 第2版 (修订版)[M]. 北京: 高等教育出版社, 2006.
[14] Goudarzi M A, Sabbagh-Yazdi S R. Numerical investigation on accuracy of mass spring models for cylindrical tanks under seismic excitation [J]. International Journal of Civil Engineering, 2009, 7 (3): 190-202.
[15] Malhotra P K, Wenk T, Wieland M. Simple Procedure for Seismic Analysis of Liquid-Storage Tanks[J]. Structural Engineering International, 2000, 10(3):197-201.
[16] Kianoush M R, Ghaemmaghami A R. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil–structure interaction[J]. Engineering Structures, 2011, 33(7):2186-2200.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}