空气弹簧是一种刚度可变,同时固有频率基本不随载荷变化的非线性隔振元件.在狭长空间中,长方体形空气弹簧比回转体空气弹簧具有更高的空间利用率.在现有回转体空气弹簧动态特性理论研究基础上,考虑了系统振动频率对多变指数与垂向动态特性的影响,建立了空气弹簧非线性刚度模型,推广了垂向刚度计算公式,并提出概念绝热频率阈值.设计了一种新型长方体形囊式空气弹簧并进行了试验研究,结果与理论预测符合良好.同时通过与商用空气弹簧的动态特性对比,展现了本设计承载能力大、空间适用性高的优点.
Abstract
Air springs are nonlinear vibration isolators with variable stiffness and natural frequency unvarying with loads. Cuboid air springs have a higher space-utilizing rate than conventional rotator air springs do. Here, based on the existing theoretical studies on dynamic characteristics of rotator air springs, considering influences of system natural frequency on polytropic exponent and vertical dynamic characteristics, a nonlinear stiffness model of air springs was established and the vertical stiffness calculation formula was extended. The conceptual adiabatic frequency threshold was proposed. A new cuboid air spring was designed and tested. Test results agreed well with those of theoretical prediction. Compared with the dynamic features of commercial air springs, it was shown that the new designed cuboid air spring has advantages of a larger load-bearing ability and a higher space-utilizing rate.
关键词
空气弹簧 /
垂向刚度 /
多变指数 /
有效面积
{{custom_keyword}} /
Key words
air spring /
vertical stiffness /
polytropic exponent /
effective area
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ryaboy V M. Static and dynamic stability of pneumatic vibration isolators and systems of isolators[J]. Journal of Sound and Vibration, 2014, 333(1):31-51.
[2] Quaglia G, Guala A. Evaluation and validation of an air spring analytical model [J]. International Journal of Fluid Power, 2003, 4(2):43-54.
[3] Heertjes M, van de Wouw N. Nonlinear dynamics and control of a pneumatic vibration isolator [J]. Journal of Vibration and Acoustics, 2006, 128(4):439-448.
[4] 张利国,张嘉钟,贾力萍,等.空气弹簧的现状及其发展[J].振动与冲击,2007,26(2):146-151.
ZHANG Li-guo, ZHANG Jia-zhong, JIA Li-ping, et al. Future and development of air springs [J]. Journal of vibration and shock, 2007, 26(2):146-151.
[5] 陈燎,周孔亢,李仲兴.空气弹簧动态特性拟合及空气悬架变刚度计算分析[J].机械工程学报,2010,46(4):93-98.
CHEN Liao, ZHOU Kongkang, LI Zhongxing. Dynamic characteristics fitting of air springs and numerical analysis of air suspensions with variant stiffness [J].Journal of Mechanical Engineering, 2010, 46(4):93-98.
[6]王家胜.带附加气室空气弹簧动力学特性研究[D].南京:南京农业大学,2009.
WANG Jiasheng. Research on dynamic characteristics of air spring with auxiliary chamber [D]. Nanjing: Nanjing Agricultural University, 2009.
[7] 成小霞,李宝仁,杨钢,等.囊式空气弹簧载荷建模与实验研究[J].振动与冲击,2014,33(17):80-84.
CHENG Xiao-xia, LI Bao-ren, YANG Gang, et al. Modeling and tests for load of a cystiform air spring [J]. Journal of vibration and shock, 2014, 33(17):80-84.
[8]叶珍霞,朱海潮,鲁克明,等.囊式空气弹簧刚度特性的非线性有限元法研究[J].振动与冲击,2006,25(4):94-97.
YE Zhen-xia, ZHU Hai-chao, LU Ke-ming, et al. Study on stiffness characteristics of air spring with nonlinear finite element method [J]. Journal of vibration and shock, 2006, 25(4):94-97.
[9] 楼京俊,朱石坚.长方体形空气弹簧刚度计算[J].噪声与振动控制,2001,21(4):22-26.
LOU Jing-jun, ZHU Shi-jian. Stiffness calculation of rectangular air spring [J]. Noise and Vibration Control, 2001, 21(4):22-26.
[10] 朱石坚,黄映云,何琳.长方体形囊式空气弹簧刚度特性[J].中国造船,2002,43(2):39-46.
ZHU Shi-jian, HUANG Ying-yun, HE Lin. Study on stiffness characteristics for rectangular air springs [J]. Shipbuilding of China, 2002, 43(2):39-46.
[11] 沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2001.
[12] Sears F W, Zemansky M W, Young H D. University physics [M]. Addison-Wesley, Boston, the United States, 1987.
[13] ContiTech. FS 960-12 RS data sheet. https://www.contitech.de/catalogs/iap/documents/datasheets/FS_960-12_RS_GB.pdf[EB/OL], 2016.
[14] ContiTech. FS 330-11Cl data sheet. https://www.contitech.de/catalogs/iap/documents/datasheets/FS_330-11_Cl_GB.pdf[EB/OL], 2016.
[15] Firestone. Airide springs selection guide. http://firestoneip.com/-/media/www/fsip/files/CommTruckTrailer/OEM/Selection%20Guides/1975SelectionGuideEN.pdf[EB/OL], 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}