摘要
多种材料的阶梯环盘负载与变幅杆共同组成了功率超声纵弯谐振变幅器,在超声加工、超声处理等领域有着广泛应用。为了快速准确地对纵弯谐振变幅器进行设计,提出了一种基于Mindlin理论的变幅器设计方法。基于Mindlin理论求出了中厚环盘单元的位移、转角、弯矩和剪力的解析表达式。然后通过振动单元间的连续条件和边界条件,建立了纵弯谐振变幅器的振动模型与频率方程。基于该振动模型,利用Matlab/GUI开发了纵弯谐振变幅器尺寸设计软件。通过理论计算设计了纵弯谐振变幅器,并进行了有限元模态分析、阻抗分析试验和超声谐振试验。仿真与试验的结果证明,基于Mindlin理论的纵弯谐振变幅器设计方法所设计的纵弯谐振变幅器的谐振频率与设计频率相符合,具有较好的设计精度,可为变幅器设计提供参考。
Abstract
An ultrasonic longitudinal-flexural resonance transducer is consisted of a horn and a stepped annular plate with multi materials, and applied on ultrasonic machining and ultrasonic treatment. In order to design longitudinal-flexural resonance transducer with rapidness and accuracy, a design method for transducers was proposed with Mindlin theory. Based on Mindlin theory, formulae for displacement, rotation angle, bending moment, and shear force of moderately thick annular plates may be obtained. By continuous and boundary conditions among vibrating elements, vibration model and equations of longitudinal-flexural resonance transducer can be established. In view of the vibration model, a design software for the transducer is developed with Matlab/GUI. Two longitudinal-flexural resonance transducers were designed theoretically. Finite element analysis, impedance experiment and ultrasonic resonance experiment of the transducers were carried out. Results proved that resonance frequency of transducers designed by this design method was in a good agreement with design frequency. The design method showed high design accuracy, and can provide reference for transducer design.
关键词
Mindlin理论 /
纵弯谐振 /
超声变幅器 /
阶梯环盘
{{custom_keyword}} /
Key words
Mindlin theory /
longitudinal-flexural resonance /
ultrasonic transducer /
stepped annular plate
{{custom_keyword}} /
付俊帆1,秦慧斌1,吕明2.
基于Mindlin理论的功率超声纵弯谐振变幅器设计理论与实验研究[J]. 振动与冲击, 2018, 37(7): 259-266
FU Junfan1,QIN Huibin1,LV Ming2.
Design and experiment of ultrasonic longitudinal-flexural resonance transducer based on Mindlin theory[J]. Journal of Vibration and Shock, 2018, 37(7): 259-266
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wang Y,Lin B,Wang S,et al.Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J].International Journal of Machine Tools and Manufacture,2014,77:66-73.
[2] Gallego-Juárez J A, Graff K F. Power ultrasonics: applications of high-intensity ultrasound[M].Amsterdam:Elsevier,2014.
[3] Campos-Pozuelo C,Vanhille C,Gallego-Juarez J A.Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys[J].IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2006,53(1): 175-184.
[4] Barone A,Gallego Juarez J A.Flexural Vibrating Free-Edge Plates with Stepped Thicknesses for Generating High Directional Ultrasonic Radiation[J].The Journal of the Acoustical Society of America,1972,51(3B):953-959.
[5] Gallego-Juarez J A.High-power ultrasonic processing: recent developments and prospective advances[J].Physics Procedia,2010,3(1):35-47.
[6] Gallego-Juárez J A,Rodriguez G,Acosta V,et al.Power ultrasonic transducers with extensive radiators for industrial processing[J].Ultrasonics Sonochemistry,2010,17(6):953-964.
[7] He X,Yao J,Zhang H,et al.Effects of excitation area of longitudinal transducer on the flexural vibration characteristics of a rectangular plate in stripe mode[J].Ultrasonics,2015,58:104-110.
[8] Ning J,He X,Zhao G.Effects of driving frequency of longitudinal transducer on the vibration characteristics of a stepped plate[J].Applied Acoustics,2014,79:164-168.
[9] Yamamoto M,Shiba H,Fujii T,et al.Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface[J].Japanese journal of applied physics,2003,42(5S):3221-3224.
[10] Kim H,Roh Y.Design and fabrication of a wideband Tonpilz transducer with a void head mass[J].Sensors and Actuators A: Physical,2016,239:137-143.
[11] Yongrae R,Hyunki K.Design and Fabrication of a Wideband Tonpilz Transducer with a Cavity-type Head Mass[C]// Pak- Kon Choi.Processing of Symposium on Ultrasonic Electronics.Tsukuba:Steering committee of symposium on ultrasonic electronics,2015.1P6-5-1-1P6-5-2.
[12] Lin S.Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion[J].IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2012,59(1):139-149.
[13] 王时英,吕明,轧刚.基于力耦合的非谐振单元组成的超声变幅器设计[J].振动与冲击,2012,31(11):104-107.
WANG Shiying, LV Ming, YA Gang. Design of an ultrasonic transducer with non-resonant units based on force coupling [J]. Journal of Vibration and Shock, 2012, 31(11): 104-107.
[14] 吕明,王时英,秦慧斌.非谐振设计理论与齿轮超声加工[M].北京:科学出版社,2014.
LV Ming,WANG Shiying,QIN Huibin.Nonresonant Design Theory and Ultrasonic Gear Machining[M].Beijing:Science Press,2014.
[15] Hosseini-Hashemi S,Bedroud M,Nazemnezhad R.An exact analytical solution for free vibration of functionally graded
circular/annular Mindlin nanoplates via nonlocal elasticity[J].Composite Structures,2013,103:108-118.
[16] Wang S,Lv M,Ya G,et al.Theoretical and Experimental Research on Design of Non-Resonant Gear Transformer[C]// Assimina Pelegri. Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal:American Society of Mechanical Engineers,2014.
[17] 佘银柱.超声珩齿非谐振单元变幅器的设计理论与实验研究[D].太原:太原理工大学,2012.
SHE Yinzhu.Theoretical and experimental research on transformer with non-resonance structure in ultrasonic gear honing[D].Taiyuan:Taiyuan University of Technology,2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}