基于分支结合部的力平衡及流体连续条件,建立了分支管道的传递矩阵通用表达式;基于吸收传递矩阵的思想,推导了含有任意分支的输流管道计算方法,并通过实验验证了该方法的正确性。通过多种分支角度和位置的计算分析,研究了分支管件对管道流固耦合振动特性的影响,发现分支管角度及位置的变化对管内流体压力波的影响大于其对管道结构振动的影响,分支角度的变化对管道结构振动和管内流体压力脉动的影响具有一定的选择性,而分支位置的变化对管道的影响较为复杂。
Abstract
Based on moment and force equilibriums and fluid continuity conditions at a pipe branches’ junction, the general formula for dynamic transfer matrix of branched pipes was established. The transfer matrix method in frequency domain for calculating dynamic responses of fluid-filled multi-branched pipes was proposed. The correctness of the proposed model and algorithm was validated using test data of cross-shaped pipes with various boundary conditions. Then, forced vibrations of branched pipes were analyzed considering effects of different branch angles and positions. The results showed that compared with pipeline structural vibration, fluid pressure fluctuation is more easily influenced by variation of branch angles and positions; the effects of branch angle changes on pipeline structural vibration and fluid pressure fluctuation have a certain selectivity, while the effects of branch position changes on pipeline structural vibration are more complex.
关键词
流固耦合 /
多分支管道 /
振动特性 /
传递矩阵方法 /
实验
{{custom_keyword}} /
Key words
fluid-structure interaction /
multi-branched pipes /
vibration characteristics /
transfer matrix method /
test
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] A. S. Tijsseling, P. Vaugrante. FSI in L-shaped and T-shaped pipe systems [C]. Proceeding of the 10th International. Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, 2001 Paper C3.
[2] A. E. Vardy, D. Fan and A. S. Tijsseling. Fluid-structure interaction in a T-piece pipe [J]. Journal of Fluids and Structures, 1996, 10: 763-786.
[3] A. S. Tijsseling, A. E. Vardy. Fluid-structure interaction and transient cavitation tests in a T-piece pipe [J]. Journal of Fluids and Structures, 2005, 20: 753-762.
[4] S.C. Tentarelli, F. T. Brown. Dynamic behavior of complex fluid-filled systems-Part II: system analysis. Journal of Dynamic Systems, Measurement and Control 2001, 123: 78-84.
[5] S. Ziada, K.W. McLaren and Y. Li. Flow-acoustic coupling in T-junctions: effect of T-Junction geometry [J]. Journal of Pressure Vessel Technology, 2009, 131: 1-14.
[6] Miroslaw Meissner. Acoustic modes induced by flow in a pipe with two closed side-branches [J]. Applied Acoustic, 2002, 63: 1071-1083.
[7] 唐永进.特殊形状三通管道的应力分析[J]. 石油化工设备技术, 2005, 26(6): 1-4.
Tang Yongjin. Stress analysis of three-way pipes in special shape [J]. Petro-chemical Equipment Technology, 2005, 26(6): 1-4.
[8] Tang Jinglin, Wang Liwei, and Li Xia. Resistance characteristics of hydraulic oil through isodiametric T-type duct with sharp corners [J]. Chinese Journal of Mechanical Engineering, 2009, 22(2): 250-255.
[9] 曹源, 金先龙, 王建炜等. T型管及管内流体动态响应仿真研究[J]. 振动与冲击, 2010. 29(4): 54-58+230.
Cao Yuan, Jin Xianlong,Wang Jianwei, et al. Numerical simulation for dynamic response of a T-shape pipe and fluid inside [J]. Journal of Vibration and Shock, 2010. 29(4): 54-58.
[10] 柳贡民, 李艳华, 朱卫华. 分支管流固耦合振动的频域解析解[J]. 振动与冲击, 2010, 29(7): 33-37, 234.
Liu Gongmin, Li Yanhua, Zhu Weihua. Analytical solution in frequency domain to vibration in a branched pipe with fluid-structure interaction [J]. Journal of Vibration and Shock, 2010, 29(7): 33-37, 234.
[11] 李帅军,柳贡民,陈浩. 考虑流固耦合管内压力波传递特性分析. 振动与冲击, 2012, 31(24): 177-182.
Li Shuaijun, Liu Gongmin, Chen Hao. Pressure wave propagation characteristics analysis in fluid-filled pipes with fluid–structure interaction[J]. Journal of Vibration and Shock, 2012, 31(24): 177-182.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}