π型断面超高斜拉桥涡振减振措施风洞试验研究

李欢1,2,何旭辉1,2,王汉封1,2,刘梦婷1,彭思1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 62-68.

PDF(1896 KB)
PDF(1896 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 62-68.
论文

π型断面超高斜拉桥涡振减振措施风洞试验研究

  • 李欢1,2,何旭辉1,2,王汉封1,2,刘梦婷1,彭思1,2
作者信息 +

Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with π-cross section

  • LI Huan1,2 , HE Xu-hui1,2 , WANG Han-feng1,2 , LIU Meng-ting1 , PENG Si1,2
Author information +
文章历史 +

摘要

π型主梁断面涡激共振是影响其在大跨度桥梁中广泛使用的重要因素之一。以某大跨度超高三塔斜拉桥为工程背景,采用节段模型测试了施工状态主梁涡振性能,试验发现在设计风速范围内主梁存在明显的竖向涡激共振现象,且在规范规定的阻尼比范围内涡振振幅均大于规范限值。为抑制主梁涡振,设计了隔流板和下稳定板等气动减振措施。结果表明:一定宽度的隔流板虽然能降低主梁涡激共振振幅,但其减振效果有限;两道一定长度的下稳定板能较好的抑制主梁涡激共振,且满足颤振稳定性要求。最后,结合数值模拟的方法对涡振发生及减振机理进行了初步探讨。

Abstract

π type cross-section of main beam vortex-induced vibration(VIV) is one of important factors influencing its wide-spread usage in long-span bridges. Taking a super high cable-stayed bridge with three towers as a certain engineering background, its VIV performances in a construction state were investigated with a sectional model in wind tunnel. Test results showed that the bridge suffers remarkable VIV within the designed wind velocity range; within the specified range of damping ratio in the code, amplitudes of the bridge’s VIV are larger than the specified value in the code; in order to suppress VIV of the main beam, flow-isolating plates and lower stabilizers are designed as aerodynamic vibration-reduction measures; the vibration-mitigation effect of flow-isolating plates seems to be limited, however, lower stabilizers have a better VIV-suppressing effect, they also satisfy the requirements of flutter stability. Finally, the mechanism for VIV-generating and suppressing was preliminarily discussed with CFD numerical simulation method.


关键词

&pi / 型断面;涡激共振;减振措施;风洞试验;CFD

Key words

π-section / VIV / vibration-reduction measures / wind tunnel test / CFD

引用本文

导出引用
李欢1,2,何旭辉1,2,王汉封1,2,刘梦婷1,彭思1,2. π型断面超高斜拉桥涡振减振措施风洞试验研究[J]. 振动与冲击, 2018, 37(7): 62-68
LI Huan1,2,HE Xu-hui1,2,WANG Han-feng1,2,LIU Meng-ting1,PENG Si1,2. Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with π-cross section[J]. Journal of Vibration and Shock, 2018, 37(7): 62-68

参考文献

[1]  华文龙. 边主梁断面叠合梁斜拉桥涡振特性及减振措施研究[D]. 湖南大学, 2013.
HUA Wenlong. Study on measures against vibration and vortex-induced vibration characteristics of edge girder composite beam cable-stayed bridge[D]. Hunan University, 2013.
[2]  FREIRE A M S, NEGRAO J H O, LOPES A V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges[J]. Computers & Structures, 2006, 84 (31-32):2128-2140.
[3]  许福友, 丁威, 姜峰,等. 大跨度桥梁涡激振动研究进展与展望[J]. 振动与冲击, 2010, 29(10):40-49.
Fu-You X U, Wei D, Feng J, et al. Development and prospect of study on vortex-induced vibration of long-span bridges[J]. Journal of Vibration & Shock, 2010, 29(10):40-49.
[4]  欧阳克俭, 陈政清, 韩艳,等. 桥面中央开口悬索桥涡激共振与制涡试验研究[J]. 振动与冲击, 2009, 28(7):199-202.
Ouyang K J, Chen Z Q, HANYan, et al. Vortex-induced vibration of a suspension bridge with central-slotted box section and its control test study[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2009, 28(7):199-202.
[5]  KUBO Y, SADASHIMA K, YAMAGUCHI E, et al. Improvement of aeroelastic instability of shallow π section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 98(14/15):1445-1457.
[6]  郭增伟, 赵林, 葛耀君,等. 基于桥梁断面压力分布统计特性的抑流板抑制涡振机理研究[J]. 振动与冲击, 2012, 31(7):89-94.
Guo Z W, Zhao L, Ge Y J, et al. Mechanism analysis for vortex-induced vibration reduction of a flat streamlined steel box-shaped girder with airflow-suppressing board based on statistical property of surface pressure[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2012, 31(7):89-94+117.
[7]  钱国伟,曹丰产,葛耀君. Ⅱ型叠合梁斜拉桥涡振性能及气动控制措施研究[J]. 振动与冲击, 2015, 34(02):176-181.
QIAN Guo-wei, CAO Feng-chan, GE Yao-jun. Vortex-induced vibration performance of a cable-stayed bridge with Π shaped composite deck and its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(02):176-181.
[8]  陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.
CHEN Zheng-qing. Bridge wind engineering[M]. Beijing: China Communications Press, 2005.
[9]  Yoshinobu Kubo, Kichiro Kimura, Kensuke Sadashima, et al. Aerodynamic performance of improved shallow π shape bridge deck[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(12-15):2113-2125.
[10]  Irwin P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7):701-712.
[11]  张志田,卿前志,肖玮,陈政清. 开口截面斜拉桥涡激共振风洞试验及减振措施研究[J]. 湖南大学学报(自然科学版), 2011, 38(07):1-5.
ZHANG Zhi-tian, QING Qian-zhi, XIAO Wei, CHEN Zheng-qing. Vortex-induced Vibration and Control Method for a Cable-stayed Bridge with Open Cross Section[J]. Journal of Hunan University(Natural Sciences), 2011, 38(07):1-5.
[12]  颜宇光,杨詠昕,周锐. 开口断面主梁斜拉桥的涡激共振控制试验研究[J]. 中国科技论文, 2015, 10(07):760-764+787.
Yan yuguang, Yang Yongxin, Zhou Rui. Experimental study on vortex-induced vibration control measure for cable-stayed bridge with open sections[J]. CHINA SCIENCEPAPER, 2015, 10(07):760-764+787.
[13]  杨光辉,屈东洋,牛晋涛,等. π型截面涡激振动风洞试验及气动抑制措施研究[J]. 石家庄铁道大学学报(自然科学版), 2015, 38(01):34-39.
Yang Guanghui, Qu Dongyang, Niu Jintao, et al. Researches on π-Section Vortex-Induced Vibration Wind Tunnel Testing and Aerodynamic Suppression Measures[J]. JOUNAL OF SHIJIAZHUANG TIEDAO UNIVERSITY ( NATUR AL SCIENCE), 2015, 38(01):34-39.
[14]  JTG/T D60-01-2004. 公路桥梁抗风设计规范[S]. 北京:人民交通出版社, 2004.
JTG/T D60-01-2004. Wind-resistent Design Specification for Highway Bridges[S]. Beijing: China Communications Press, 2004.
[15]  朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J]. 工程力学, 2005, 22(05):204-208+176.
Zhu L D. Mass simulation and amplitude conversion of bridge section model test for vortex-induced oscillation[J]. Engineering Mechanics, 2005, 22(05):204-208+176.
[16]  Lee S, Lee J S, Kim J D. Prediction of vortex-induced wind loading on long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, s67–68(4):267–278.
[17]  Fujiwara A, Kataoka H, Ito M. Numerical simulation of flow field around an oscillating bridge using finite difference method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, s46–47(1):567–575.
[18]  SHIMADA, K, ISHIHARA, T. APPLICATION OF A MODIFIED k–ε MODEL TO THE PREDICTION OF AERODYNAMIC CHARACTERISTICS OF RECTANGULAR CROSS-SECTION CYLINDERS[J]. Journal of Fluids & Structures, 2002, 16(4):465-485.

PDF(1896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/