光滑圆柱风噪声的风洞试验研究

沈国辉1, 张扬1, 余世策1, 朱敏捷2, 郑朝阳2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 85-90.

PDF(857 KB)
PDF(857 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (7) : 85-90.
论文

光滑圆柱风噪声的风洞试验研究

  • 沈国辉1, 张扬1, 余世策1, 朱敏捷2, 郑朝阳2
作者信息 +

Wind tunnel tests for aeolian noise generated by a smooth circular cylinder

  • SHEN Guo-hui1, ZHANG Yang1, YU Shi-ce1, ZHU Min-jie2, ZHENG Zhao-yang2
Author information +
文章历史 +

摘要

针对光滑圆柱在不同风速时的风噪声问题,建造了用于杆系结构风噪声试验的声学风洞,进行了11种直径圆柱在4种风速下的风洞试验,分析了圆柱风噪声的频谱特征和卓越频率,探讨了累计卓越声压级和卓越频带宽度等随风速和雷诺数的变化规律。结果表明:圆柱风噪声的卓越频率随着风速的增大呈线性增加,随直径的增加呈反比例降低;在试验雷诺数范围(3e3~1e5)内由卓越频率反算的斯特罗哈数在0.20附近,并随着雷诺数增加呈缓慢减小趋势;圆柱的累计卓越声压级随着雷诺数的增大而增大,在雷诺数较小(小于3e4)时离散较大,在较大雷诺数时离散减小。

Abstract

In order to study aeolian noise generated by a smooth circular cylinder under different wind speed conditions, an acoustic wind tunnel was built to conduct aeolian noise tests of rod system type structures. The wind tunnel tests for circular cylinders of 11 diameters were conducted under 4 wind speeds. The frequency spectra’s characteristics and dominant frequencies of aeolian noises generated by circular cylinders were analyzed. Finally, the variation laws of accumulative dominant sound pressure levels and dominant frequency band widths with varying wind velocity and Reynolds number were investigated. Results showed that dominant frequencies of wind noises generated by circular cylinders are proportional to wind speed and inverse proportional to diameter of circular cylinder; Strouhal number calculated from dominant frequencies within Reynolds number range of 3e3-1e5 is about 0.20, it has a gradually decreasing trend with increase in Reynolds number; the accumulative dominant sound pressure levels increase with increase in Reynolds number, they disperse more within a lower Reynolds number range of less than 3e4, and less within a higher Reynolds number range.


关键词

风噪声 / 光滑圆柱 / 声学风洞 / 风洞试验 / 声压级

Key words

aeolian noise / smooth circular cylinder / acoustic wind tunnel / wind tunnel test / sound pressure level

引用本文

导出引用
沈国辉1, 张扬1, 余世策1, 朱敏捷2, 郑朝阳2. 光滑圆柱风噪声的风洞试验研究[J]. 振动与冲击, 2018, 37(7): 85-90
SHEN Guo-hui1, ZHANG Yang1, YU Shi-ce1, ZHU Min-jie2, ZHENG Zhao-yang2. Wind tunnel tests for aeolian noise generated by a smooth circular cylinder[J]. Journal of Vibration and Shock, 2018, 37(7): 85-90

参考文献

[1]  Powell A. Theory of vortex sound[J]. Journal of the Acoustical Society of America, 1964, 36(1):177-195.
[2]  Revell J D, Prydz R A, Hays A P. Experimental study of airframe noise vs drag relationship for circular cylinders[R]. Lockheed-California Corporation, LR 28074, Feb. 25, 1977.
[3]  Fujita H, Wei S, Furutani H, et al. Experimental investigations and prediction of aerodynamic sound generated from square cylinders[C]// AIAA/CEAS 4th Aeroacoustics Conference, 02-04 June 1998, Toulouse, France: AIAA 98-2369.
[4]  Fujita H. The characteristics of the Aeolian tone radiated from two-dimensional cylinders[J]. Fluid Dynamics Research, 2010, 42(1):154-168.
[5]  King W F, Pfizenmaier E. An experimental study of sound generated by flows around cylinders of different cross-section[J]. Journal of Sound and Vibration, 2009, 328:318-337.
[6]  Iglesias E L, Thompson D J, Smith M G. Experimental study of the aerodynamic noise radiated by cylinders with different cross-sections and yaw-angles[J]. Journal of Sound and Vibration, 2016, 361:108-129.
[7]  Moreau D J, Doolan C J. Flow-induced sound of wall-mounted finite length cylinders[J]. AIAA Journal, 2013, 51(10):2493-2502.
[8]  Porteous R, Doolan C J, Moreau D J. Directivity pattern of flow-induced noise from a wall-mounted, finite length circular cylinder[C]// Proceedings of Acoustics, Victor Harbor, Australia, 2013.
[9]  Hutcheson F V, Brooks T F. Noise radiation from single and multiple rod configurations[J]. International Journal of Aeroacoustics, 2012, 11(3):291-334.
[10]  Alomar A, Angland D, Zhang X, et al. Experimental study of noise emitted by circular cylinders with large roughness[J]. Journal of Sound and Vibration, 2014, 333:6474-6497.
[11]  Geyer T, Sarradj E, Herold G. Flow noise generation of cylinders with soft porous cover [C]// AIAA/CEAS 21st Aeroacoustics Conference, 22-26 June 2015, Dallas, Texas: AIAA 2015-3147
[12]  Sueki T, Takaishi T, Ikeda M, et al. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamics Research, 2010, 42(42): 154-168.

PDF(857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/