基于EMD和能量算子的模态参数识别在行星齿轮箱中的应用

李康强,冯志鹏

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 1-8.

PDF(1683 KB)
PDF(1683 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 1-8.
论文

基于EMD和能量算子的模态参数识别在行星齿轮箱中的应用

  • 李康强 , 冯志鹏
作者信息 +

Modal parameter identification based on empirical mode decomposition and energy operator for planetary gearboxes

  •   LI Kang-qiang  FENG Zhi-peng
Author information +
文章历史 +

摘要

针对行星齿轮箱模态试验下多自由度、低频、密频的模态参数识别问题,提出一种将经验模式分解(empirical mode decomposition, EMD)与能量算子(energy operator, EO)相结合的模态参数识别方法。为了定阶模态和满足能量算子对单分量的要求,首先采用EMD方法将振动信号分解成多个固有模式函数(intrinsic mode function, IMF)。而后对各个IMF利用高阶能量算子估算频率,计算各IMF与原信号的相关性并根据频率判断阶次及去除虚假分量。由于阻尼比本质就是反映了能量衰减,而能量算子能够追踪系统能量,结合二者提出半周期能量算子法估算模态阻尼比。分析了仿真信号和模态试验信号,并与传统方法进行对比分析,实验结果表明,该方法能有效提取行星齿轮箱各阶次的模态参数,验证了方法的有效性与可行性。

Abstract

In order to identify modal parameters for a planetary gearbox which has property of multi-degree of freedom, low frequency, and dense frequency, a new approach was introduced in conjunction with the empirical mode decomposition (EMD) and energy operator (EO). A vibration signal was decomposed into several intrinsic mode functions (IMFs) via the EMD method to determine the mode order and to satisfy the requirement of the EO. Then we estimate the modal frequencies of each IMF via the higher order energy operator. According to the correlation between IMFs and the original signal, we could distinguish the mode order by the size of frequency. In essence, the damping ratio reflects the energy attenuation. Meanwhile, the energy operator can track the system energy. Based on the aforementioned two theories, we put forward a half cycle energy operator (HCEO) method to estimate damping ratio. By comparing conventional methods, the proposed method was illustrated and verified by simulations and experiments. The results show that the proposed method is effective to extract modal parameters of a planetary gearbox.

关键词

模态频率 / 结构阻尼比 / 能量算子 / 行星齿轮箱

Key words

modal frequency / structural damping ratio / energy operator / planetary gearbox

引用本文

导出引用
李康强,冯志鹏. 基于EMD和能量算子的模态参数识别在行星齿轮箱中的应用[J]. 振动与冲击, 2018, 37(8): 1-8
LI Kang-qiang FENG Zhi-peng . Modal parameter identification based on empirical mode decomposition and energy operator for planetary gearboxes[J]. Journal of Vibration and Shock, 2018, 37(8): 1-8

参考文献

[1] Parker R G, Agashe V, Vijayakar S M. Dynamic response of a planetary gear system using a finite element/contact mechanics model[J]. Journal of Mechanical Design, 2000, 122(3): 304-310.
[2] FENG Z, Zuo M J. Vibration signal models for fault diagnosis of planetary gearboxes[J]. Journal of Sound and Vibration, 2012, 331(22): 4919-4939.
[3] 许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.
XU Ben-wen, JIAO Qun-ying. Mechanical vibration and modal analysis foundation [M]. Beijing: Machine Press, 1998.
[4] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析:理论、实验与应用[M]. 天津大学出版社, 2014..
CAO shu-qian, ZHANG wen-de, XIAO long-xiang. Vibration modal analysis:theoty, experiment and application [M]. Tianjin university press, 2014.
[5] Lin J, Parker R G. Sensitivity of planetary gear natural frequencies and vibration modes to model parameters[J]. Journal of Sound and Vibration, 1999, 228(1): 109-128.
[6] Lin J, Parker R G. Natural frequency veering in planetary gears[J]. Mechanics of Structures and Machines, 2001, 29(4): 411-429.
[7] Maragos P, Potamianos A.Higher order differential energy operators[J].IEEE Signal Processing, 1995, 2(8):152-154.
[8] Feng Z, Qin S, Liang M. Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J]. Renewable Energy, 2016, 85:45-56.
[9] Faghidi H, Liang M. Bearing fault identification by higher order energy operator fusion: A non-resonance based approach[J]. Journal of Sound & Vibration, 2016, 381:83-100.
[10] Cooper J E. Extending the logarithmic decrement method to analyse two degree of freedom transient responses[J]. Mechanical systems and signal processing, 1996, 10(4): 497-500.
[11] Ibrahim S R, Mikulcik E C. A method for the direct identification of vibration parameters from the free response[J]. 1977.
[12] Ibrahim S R. An approach for reducing computational requirements in modal identification[J]. Aiaa Journal, 1986, 24(10):1725-1727.
[13] Seybert A F. Estimation of damping from response spectra[J]. Journal of Sound and Vibration, 1981, 75(2): 199-206.
 [14] LE D H, ChENG J, YANG Y, et al. Gears fault diagnosis method using ensemble empirical mode decomposition energy entropy assisted ACROA-RBF neural network[J]. Journal of Computational & Theoretical Nanoscience, 2016, 13(5):3222-3232.
[15] Marceau R J, Sirandi M, Soumare S, et al. A review of signal energy analysis for the rapid determination of dynamic security limits[J]. Electrical and Computer Engineering, Canadian Journal of, 1996, 21(4): 125-132.
[16] 曾储惠, 黄方林, 柳成荫, 等. 基于信号能量分析的结构阻尼比识别方法[J]. 振动与冲击, 2003,22(2): 66-68.
ZENG Chu-hui, HUANG Fang-lin, LIU Cheng-yin, et al. Damping ratio identification method based on signal energy analysis[J]. Journal of vibration and shock, 2003,22(2): 66-68.
[17] Norden E. Huang, Zheng Shen, Steven R. Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time analysis[J]. Proc. R. Soc. Lond. A, 1998, 454(1971):903-955.
[18] Loh C H. Application of the empirical mode decomposition-hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses[J]. Journal of Loss Prevention in the Process Industries, 2016, 91(5):1339-1357.

PDF(1683 KB)

Accesses

Citation

Detail

段落导航
相关文章

/