基于多目标拓扑优化的复合低屈服点钢阻尼器减震性能分析

何浩祥1,2,王小兵1,张小福1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 158-166.

PDF(2479 KB)
PDF(2479 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 158-166.
论文

基于多目标拓扑优化的复合低屈服点钢阻尼器减震性能分析

  • 何浩祥1,2,王小兵1,张小福1
作者信息 +

Seismic performance of compound low yield point damper based on multi target topology optimization

  • HE Haoxiang1,2,WANG Xiaobing1,ZHANG Xiaofu1
Author information +
文章历史 +

摘要

鉴于传统低屈服点钢板阻尼器屈服点较高且不能调控的缺点,提出了由低屈服点钢板和普通钢板组合的复合低屈服点钢板阻尼器。提出包括边缘镂空、内部镂空和椭圆镂空等三种钢板阻尼器的新型镂空形式,并将“最大刚度”和“满应力状态”同时作为优化目标,通过交替优化方法对不同镂空形状进行拓扑优化,获得最优形状。对不同形式的复合钢板阻尼器进行有限元数值计算,计算结果表明内部优化模型阻尼器和边缘优化模型阻尼器初始刚度较大、滞回曲线饱满且无应力集中现象。对不同材料配比的两种优化模型阻尼器进行了数值模拟,验证本文提出的复合钢板阻尼器的屈服点具备可调性。对装有两种优化模型阻尼器的框架整体抗震减震能力进行了仿真分析,结果表明边缘优化模型阻尼器耗能能力更优越,适合应用。

Abstract

In view of the disadvantages of the traditional low yield point steel plate dampers with high yield point and inadequate adjustability, a compound low yield point steel plate damper was presented, and it is composed of low yield point steel plates and common steel plates. Three kinds of new hollow shape steel plate dampers were presented, which include boundary hollow, interior hollow, and ellipse hollow. The “maximum rigidity” and “full stress state” were used as the new optimization objectives. The topology optimization of different hollow shapes was performed by the alternating optimization method to obtain the optimal shape. Finite element calculation of different forms of compound steel plate damper was carried out. The results show that the initial stiffness of the boundary optimization damper and interior optimization damper is lager, the hysteresis curves are full and the stress is homogeneous. The numerical simulation of two kinds of optimization model dampers with different material ratios and different was carried out. The results show that the yield point of compound steel plate dampers can be regulated. The overall seismic capacity of the frame structure with these two kinds of optimization model dampers was simulated and analyzed. It is evident that the boundary optimization model damper has better energy dissipation capacity.

关键词

金属阻尼器 / 低屈服点钢 / 满应力 / 拓扑优化 / 耗能

Key words

 metal damper / low yield point steel / full stress state / topology optimization / energy dissipation

引用本文

导出引用
何浩祥1,2,王小兵1,张小福1. 基于多目标拓扑优化的复合低屈服点钢阻尼器减震性能分析[J]. 振动与冲击, 2018, 37(8): 158-166
HE Haoxiang1,2,WANG Xiaobing1,ZHANG Xiaofu1. Seismic performance of compound low yield point damper based on multi target topology optimization[J]. Journal of Vibration and Shock, 2018, 37(8): 158-166

参考文献

[1] 章丛俊,李爱群,赵明. 软钢阻尼器耗能减震结构的研究与应用综述 [J]. 工业建筑,2006,36(9):17-21
Zhang Congjun, Li Aiqun, Zhao Ming. Summary of research on and applications of passive energy dissipation systems of mild steel damper [J]. Industrial Construction, 2006, 36(9):17-21.
[2] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake-resistant Structures [J]. Bull N. Z. National Society for Earthquake Engineering,1972, 5(3):63-88.
[3] Whittaker A S, Bertero V V, Thompson C I, et al. Sesismic testing of steel plate energy dissipation devices [J]. Earthquake Spectra, 1991, 7(4):563-604.
[4] Tsaik K C, Chen H W, Hong C P, et al. Design of steel triangular plate energy absorbers for seismic resistant construction [J]. Earthquake Spectra, 1993,9(3):505-528.
[5] Tirca L D, Foti D, Diaferio M. Response of middle rise steel frames with and without passive dampers to near field ground motions[J], Engineering Structures,2003,25(2):169-179.
[6] 周云,刘季. 圆环耗能器的试验研究[J]. 世界地震工程,1996,11(4):1-7.
Zhou Yun, Liu Ji. Experimental study on the behavior of circular ring energy dissipator [J]. World Information on Earthquake Engineering, 1996, 11(4):1-7.
[7] 周云,刘季. 新型耗能(阻尼)减震器的开发与研究[J]. 地震工程与工程振动,1998,18(1):71-79.
Zhou Yun, Liu Ji. Development and study of new energy dissipaters (dampers) [J]. Earthquake Engineering and Engineering Vibration, 1998,18(1):71-79.
[8] 张文元,张敏政,李东伟. 新型加劲软钢阻尼器性能与试验[J]. 哈尔滨工业大学学报,2008,40(12):1888-1894.
Zhang Wenyuan, Zhang Minzheng, Li Dongwei. An experimental research on performance and application of a new type of mild steel damper added damping and stiffness (ADAS) [J]. Journal of Harbin Institute of Technology, 2008, 40(12):1888-1894.
[9] Mito M, Tamura R, Shimizu K, et al. Study on seismic design method for building with steel damper (Part1)[C]//Proceedings of AIJ Annual Meeting, 1997.
[10] 李钢, 李宏男. 新型软钢阻尼器的减震性能研究[J]. 振动与冲击,2006,25(3):66-72.
Li Gang, Li Hongnan. Study on vibration reduction of structure with a new type of mild metallic dampers [J]. Journal of Vibration and Shock, 2006, 25(3):66-72.
[11] 田洁, 颜智超, 卢俊龙. 极低屈服点钢在密肋壁板结构中的减震控制研究[J].振动与冲击, 2014, 33(5): 160-164.
Tian Jie, Yan Zhichao, Lu Junlong. Aseismic control of a multi-ribbed slab structure using ultra low yield strength steel [J]. Journal of Vibration and Shock, 2014, 33(5): 160-164 .
[12] GB/T 228.1-2010 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京:中国标准出版社, 2011.
GB/T 228.1-2010 Metallic materials Tensile testing part 1: Method of test at room temperature [S]. Beijing: China Standards Press, 2011.
[13] 邢书涛,郭迅. 一种新型软钢阻尼器力学性能和减震效果的研究 [J].地震工程与工程振动, 2003,23(6):179-186.
Xing Shutao, Guo Xun. Study on mechanical behavior and effectiveness of a new type of mild steel damper [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(6):179-186.
[14] Deng Kailai, Pan Peng. Shape optimization design of steel shear panel dampers [J]. Journal of Constructional Steel Research,2014, 99:187-193.
[15] 王强, 安立刚等. 新型钢板阻尼器的减震性能分析[J]. 土木工程学报, 2010, 43:341-344.
Wang Qiang, An Ligang, etc. Analysis on vibration suppression of a new type of planar steel damper [J]. China Civil Engineering Journal, 2010, 43:341-344.
[16] Liu Y,Shimoda M. Shape optimization of shear panel damper for improving the deformation ability under cyclic loading [J]. Structural & Multidisciplinary Optimization, 2013, 48(2):427-435.
[17] Ohsaki M. Optimization of finite dimensional structures [M]. CRC Press; 2010.
[18] Pan P, Ohsaki M, Tagawa H. Shape optimization of H-beam flange for maximum plastic energy dissipation [J]. Journal of Structural Engineering 2015, 133(8):1176–1179.
[19] Vanderplaats G N. Multidiscipline design optimization [J]. Applied Mechanics Reviews, 1988, 41(6):257-262.
[20] Kirsch U, Bogomolni M, Sheinman I. Efficient procedures for repeated calculations of the structural response using combined approximations [J]. Computers&Structures, 2000,78 (S1-3):449-457.
[21] 谢亿民,黄晓东. 渐进结构优化法(ESO) 和双向渐进结构优化法(BESO) 的近期发展[J].力学进展,2011,04(41):462-471.
Xie Yi Ming, Huang Xiao Dong. Recent Developments of Evolutionary Structural Optimazation (ESO) and Bidirectional Evolutionary Structural Optimization(BESO)[J]. Advances in Mechanics, 2011, 4(41):462-471.
[22] Liu Q M. A design method of rib distribution for thin plate structure based on the full stress rule [J]. Machinery Design & Manufacture, 2007, 1(1):23-24.
[23] 丁晓红,程莉. 基于SKO 方法的满应力结构拓扑优化设计[J]. 中国机械工程, 2009, 20(15):1765-1770.
Ding Xiao Hong, Cheng Li. Topology optimization of full-stressed structures based on SKO method [J]. China Mechanical Engineering, 2009, 20(15):1765-1770.
[24] FEMA274. NEHRP commentary on the guidelines for the seismic rehabilitation of buildings [S].Washington DC: Federal Emergency Management Agency, 1997.
[25] ATC40. Seismic evaluation and retrofit of concrete buildings [R]. ATC Redwood City, California, USA, 1996.

PDF(2479 KB)

Accesses

Citation

Detail

段落导航
相关文章

/