圆柱形破片侵彻纤维增强复合材料三明治板的弹道极限模型

郑折1,李晓彬2,霍契机3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 17-21.

PDF(897 KB)
PDF(897 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 17-21.
论文

圆柱形破片侵彻纤维增强复合材料三明治板的弹道极限模型

  • 郑折1,李晓彬2,霍契机3
作者信息 +

AModelfor Ballistic Limitof Cylindrical Fragment Penetrating the FRP Sandwich Plate

  • ZHENG Zhe1 ,LI Xiaobin2 ,HUO Qiji3
Author information +
文章历史 +

摘要

本文分析了圆柱形破片侵彻纤维增强复合材料三明治板的过程,基于能量守恒定律分别对圆柱形破片侵彻面板、复合材料夹层和背板三个阶段中消耗的能量进行了理论推导,建立了圆柱形破片侵彻纤维增强复合材料三明治板的计算模型,并得到了剩余速度的计算公式,令剩余速度等于零,即可得到弹道极限。将计算模型得出的结果与试验结果进行了对比,验证了计算模型的可行性与有效性。本文的计算模型可以为钢/纤维增强复合材料/钢复合装甲结构的抗侵彻设计提供指导。

Abstract

In this work, the process of a cylindrical fragment penetrating a fiberreinforced composite sandwich plate was analyzed. Based on the law of energy conservation, the energy consumption in the three stages of the cylindrical fragment penetrating fiber reinforced composite sandwich plate was theoretically derived, including the penetration of panels, the penetration of composite laminated, and the penetration of back. Then the analytical model of the cylindrical fragment penetrating the fiber reinforced composite sandwich plate was built, and the calculating formula of residual velocity was obtained. The ballistic limit could be obtained when the residual velocity was equal to zero. Comparing the results calculated by the analytical model with experimental results, the feasibility and effectiveness of the analysis model was verified.

关键词

复合装甲 / 高速破片 / 弹道极限 / 计算模型

Key words

composite armor / high speed fragment / ballistic limit;analytical model

引用本文

导出引用
郑折1,李晓彬2,霍契机3. 圆柱形破片侵彻纤维增强复合材料三明治板的弹道极限模型[J]. 振动与冲击, 2018, 37(8): 17-21
ZHENG Zhe1,LI Xiaobin2,HUO Qiji3. AModelfor Ballistic Limitof Cylindrical Fragment Penetrating the FRP Sandwich Plate[J]. Journal of Vibration and Shock, 2018, 37(8): 17-21

参考文献

[1] 朱锡, 梅志远, 刘润泉,等. 舰用轻型复合装甲结构及其抗弹实验研究[J]. 爆炸与冲击, 2003, 23(1):61-66.
ZHU Xi, MEIZhi-yuan, LIU Run-quan, et al. Warship’s lightcompositearmorstructureresistibilityforballisticimpact[J]. Explosionandshockwaves, 2003, 23 (1): 61-66.
[2] Gupta N K, Iqbal M A, Sekhon G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates[J]. International Journal of Impact Engineering, 2008, 35(1):37-60.
[3] 潘建华, 文鹤鸣. 平头弹丸正撞击下延性金属靶板的破坏模式[J]. 高压物理学报, 2007, 21(02):157-164.
PAN Jian-hua, WEN He-ming. Failure Modes of Ductile Metal Plates under Normal Impact by Flat-Ended Projectiles [J]. ChineseJournal of HighPressure Physics, 2007, 21 (02): 157-164.
[4] 张国伟. 爆炸作用原理[M]. 国防工业出版社, 2006.
ZHANGGuo-wei. Activeprinciple ofexplosion [M]. National Defense Industry Press, 2006.
[5] 文鹤鸣. 厚金属靶在弹丸打击下的侵彻与穿透[J]. 高压物理学报, 2002, 16(02):94-104.
WEN He-ming. Penetration and performation of thick metallic targets under impact by missiles [J]. ChineseJournal of High Pressure Physics, 2002, 16(02):94-104.
[6] 蒋志刚, 曾首义, 周建平. 金属薄靶板冲塞破坏最小穿透能量分析[J]. 工程力学, 2004, 21(05):203-208.
JIANGZhi-gang, ZENGShou-yi, ZHOU Jian-ping. Analysis of critical impact energy for plugging failure of thin metallic plates [J]. Engineering Mechanics, 2004, 21(5):203-208
[7] Zhu G, Goldsmith W, Dharan C K H. Penetration of laminated Kevlar by projectiles—II. Analytical model[J]. International Journal of Solids & Structures, 1992, 29(4):421-436.
[8] 杜忠华, 赵国志, 王晓鸣, 等. 复合材料层合板抗弹性的工程分析模型[J]. 兵器材料科学与工程, 2002, 25(1):8-10.
DUZhong-hua, ZHAOGuo-zhi, WANG Xiao-ming, et al. Engineering analysis model of bullet-proof property of composite laminates [J]. Ordnance Material Science and Engineering, 2002,25(1):59-61.
[9] Wen H M. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes[J]. Composite Structures, 2000, 49:321-329.
[10] Naik N K, Shrirao P. Composite structures under ballistic impact[J]. Composite Structures, 2004, 66:579-590.
[11] 梅志远, 朱锡, 张立军. FRC层合板抗高速冲击机理研究[J]. 复合材料学报, 2006, 23(2):143-149.
MEIZhi-yuan, ZHU Xi, ZHANG Li-jun. Ballistic protective mechanism of FRC laminates [J]. ActaMateriaeCompositaeSinica, 2006, 23(2):143-149.
[12] Villanueva G R, Cantwell W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science & Technology, 2004, 64(1):35-54.
[13] Abdullah M R, Cantwell W J. The impact resistance of polypropylene-based fibre–metal laminates[J]. Composites Science & Technology, 2006, 66(11-12):1682-1693.
[14] Hazizan M A, Cantwell W J. The low velocity impact response of foam-based sandwich structures[J]. Composites Part B Engineering, 2002, 33(3):193-204.
[15] Hazizan M A, Cantwell W J. The low velocity impact response of an aluminium honeycomb sandwich structure[J]. Composites Part B Engineering, 2003, 34(8):679-687.
[16] 徐豫新, 王树山, 严文康,等. 纤维增强复合材料三明治板的破片穿甲实验[J]. 复合材料学报, 2012, 29(03):72-78.
XU Yu-xin, WANG Shu-shan, YAN Wen-kang, et al. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores [J], ActaMateriaeCompositaeSinica, 2012, 29(3):72-77.
[17] Bai Y L, Johnson W. Plugging: physical understanding and energy absorption[J]. Materials Science & Technology, 2013.
[18] Wen H M, Jones N. Semi-Empirical Equations for the Perforation of Plates Struck by a mass.[J]. Thomas Telford, 1992
[19] 王晓强, 朱锡. 高速钝头弹侵彻中厚金属靶板的机理研究[J]. 工程力学, 2010, 27(12):213-218.
WANG Xiao-qiang, ZHU Xi. Study on high-velocity blunt-nosed projectiles penetrating Mechanics, 2010, 27(12):213-218.

PDF(897 KB)

Accesses

Citation

Detail

段落导航
相关文章

/