低气压CO2环境下基于光纤法珀振动传感器的超声声速测试与分析

张景川1,杨晓宁1,王晶1,崔寒茵2,李超2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 172-179.

PDF(2404 KB)
PDF(2404 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 172-179.
论文

低气压CO2环境下基于光纤法珀振动传感器的超声声速测试与分析

  • 张景川1,杨晓宁1,王晶1,崔寒茵2,李超2
作者信息 +

Measurement and analysis of ultrasonic speed in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor

  • ZHANG Jingchuan1,YANG Xiaoning1,WANG Jing1,CUI Hanyin2,LI Chao2
Author information +
文章历史 +

摘要

为了分析超声传感技术在火星大气环境下应用的可行性,提出了一种低气压CO2环境下基于光纤法珀振动传感器的超声声速测试方法,搭建了一套低气压气体超声声速测量试验系统,可实现不同成分(空气、CO2)气体压力从600Pa~1MPa分阶段可调,并基于光纤法珀振动传感器开展了不同气体组分、不同压力、不同距离下中心频率分别为21,25,34与40kHz的高精度声速测量试验,通过理论计算与试验结果表明:膜片式光纤法珀振动传感器在600PaCO2气体中仍然可以接收到超声信号,在气体温、湿度不变条件下,超声传播速度与压力、频率无关,与气体成分有关;在15 环境下,各频率超声信号在600Pa~1MPa气体压力范围内,测量平均声速在CO2环境下为268.79m/s,低于空气环境的336.18m/s;获得了15 ,600PaCO2气体试验条件下,超声传播速度约为271.51m/s。

Abstract

Aiming at the feasibility of the ultrasonic sensing technology applied in the mars environment, a measurement method of ultrasonic velocity in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor was proposed. An ultrasonic velocity test system has been designed and implemented. The pressure in the chamber was adjusted from 600 Pa to 1 MPa with different intervals, using four pairs of piezoelectric actuators and sensors, with central frequencies being 21, 25, 34, and 40 kHz respectively, and was applied to generate ultrasonic signals. The experimental results show that, the optical fiber Fabry-Perot (F-P) pressure sensor can adapt to the low pressure environment and can still receive the ultrasonic signals in 600 Pa CO2 environment. The ultrasonic velocity rarely varies with the pressure in the range from 600 Pa to 1 MPa, while it depends on the composition of the gas and the temperature. The ultrasonic velocity in atmosphere is 336.18 m/s, which is travel faster than in CO2 environment 268.79 m/s, and the ultrasonic velocity in 15 ℃, 600 Pa CO2 environment is 271.51 m/s.

关键词

超声声速 / 低气压CO2环境 / 光纤法珀振动传感器

Key words

ultrasonic velocity / low-pressure CO2 atmosphere / optical fiber Fabry-Perot vibration sensor

引用本文

导出引用
张景川1,杨晓宁1,王晶1,崔寒茵2,李超2. 低气压CO2环境下基于光纤法珀振动传感器的超声声速测试与分析[J]. 振动与冲击, 2018, 37(8): 172-179
ZHANG Jingchuan1,YANG Xiaoning1,WANG Jing1,CUI Hanyin2,LI Chao2. Measurement and analysis of ultrasonic speed in the low pressure of CO2 environment based on the optical fiber Fabry-Perot vibration sensor[J]. Journal of Vibration and Shock, 2018, 37(8): 172-179

参考文献

[1]欧阳自远,肖福根.火星探测的主要科学问题[J].航天器环境工程, 2011, 28(3):205-217.
Ziyuan Ouyang, Fugen Xiao. Major scientific issuesinvolved in Mars exploration[J]. Spacecraft Environment Engineering,2011, 28(3):205-217 (in Chinese)
[2]欧阳自远,肖福根.火星及其环境[J].航天器环境工程, 2012, 29(6):591-601.
Ziyuan Ouyang, Fugen Xiao. The Mars and its environment[J]. Spacecraft Environment Engineering,2012, 29(6):591-601(in Chinese)
[3]K. S. Novak, J. G. Kempenaar, M. Redmond, et al. Preliminary surface thermal design of the Mars 2020 Rover. 45th International Conference on Environmental Systems, Bellevue, WA, 2015, July16:2015-134.
[4]D. Banfield. A Martian sonic anemometer. Proceedings of the 2005 IEEE Aerospace Conference, 2005, March5-12: 641-647-134.
[5]Weijun Lin, Yang Jia, Chao Li, et al. Ultrasound propagation in the Martian atmosphere, Proc. ICSV 24, London, 2017, July 23-27.
[6]Yang Jia, Weijun Lin, Bo Xue, et al. Experiments of speed of sound in the low pressure atmosphere of Mars, Proc. ICSV 24, London, 2017, July 23-27.
[7]贾阳, 李晔, 吉龙,等.火星探测任务对环境模拟技术的需求展望[J].航天器环境工程, 2015, 32(5):464-468.
Yang Jia, Ye Li, Long, Ji,et al. Demands of Mars exploration missions on environmental simulation technologies[J]. Spacecraft Environment Engineering, 2015, 32(5):464-468(in Chinese).
[8]张磊,刘波涛, 许杰.火星探测器热环境模拟与试验技术探讨[J].航天器环境工程, 2014, 31(3):272-276.
Lei Zhang, Botao Liu, and Jie Xu. The thermal environment simulation and test technology for Mars probe [J].. Spacecraft Environment Engineering,2014, 31(3): 272-276 (in Chinese)
[9]Williams, J.P. Acoustic environment of the martian surface. Geophys. Res. 2001, 106, 5033–5041.
[10]Bass, H.E., Chambers, J.P. Absorption of sound in the Martian atmosphere.Acoust. Soc. Am. 2001, 109, 3069-3071.
[11]A. Petculescu. Acoustic properties in the low and middle atmospheres of Mars and Venus.Acoust. Soc. Am. 2016, 140, 1439-1446.
[12]王瑞,张娜,李韵,等.低气压放电效应研究进展[J].空间电子技术, 2015(5):1-6.
Wang Rui, Zhang Na, Li Yun, et al.Advances in Research on Low Pressure Discharge [J]. SPACE ELECTRONIC TECHNOLOGY,2015(5):1-6(in Chinese) .
[13]单宁,史仪凯,赵江海,等.光纤Fabry-Perot超声传感系统设计与应用[J].光电子•激光,2008, 19(7):881-883.
Shan Ning, Shi Yikai, Zhao Jianghai, et al. Design and application of optical fiber fabry-perot sensing system for detecting ultrasonic waves [J]. JOURNAL OF OPTOELECTRONICS•LASER, 2008, 19(7):881-883(in Chinese).
[14]Kim, T. V., Kwang, S.S., Jin, H. N., et al. Acoustic monitoring of HV equipment with optical fiber sensors[J]. IEEE Transactions on Dielectries and Electrical Insulation, 2003, 10(2):266-270.
[15]郭少朋, 方光荣, 刘俊,等.非本征光纤法珀传感器的振动特性研究[J].振动与冲击,2016, 35(2):158-167.
Guo Shaopeng, Fang Guangrong, Liu Jun, et al. Vibration characteristics of extrinsic fiber Fabry-Perot sensors[J]. Journalof Vibrationand Shocky, 2016, 35(2):158-167 (in Chinese).

PDF(2404 KB)

Accesses

Citation

Detail

段落导航
相关文章

/