宽频压电振动俘能器的研究现状综述

徐振龙 1, 单小彪 2,谢涛 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 190-199.

PDF(1224 KB)
PDF(1224 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 190-199.
论文

宽频压电振动俘能器的研究现状综述

  • 徐振龙 1, 单小彪 2,谢涛 2
作者信息 +

A review of broadband piezoelectric vibration energy harvester

  • XU Zhenlong1,SHAN Xiaobiao2,XIE Tao2
Author information +
文章历史 +

摘要

随着便携式电子设备、微机电系统(MEMS)和无线传感器网络的广泛应用,化学电池供能的弊端日益显现。压电振动俘能器可以将环境中的振动能转换成电能,实现低功耗微电子产品的无线供能或能量自给。在实际应用中,为了增强俘能器的环境适应能力,提高其俘能效率,宽频压电俘能技术成为当前的研究热点。首先介绍了压电振动俘能器的工作原理、常用压电材料和工作模式,然后综述了宽频压电俘能技术的国内外研究现状,分析了当前研究中存在的问题和不足,最后提出了未来可能的研究方向。压电振动俘能技术为低功耗微电子产品提供了一种稳定、安全、长久的新供能方式,具有良好的应用前景。

Abstract

In recent years, portable electronic devices, microelectromechanical systems (MEMS) and wireless sensor networks have been widely used. The disadvantages of the batteries gradually become obvious. The piezoelectric vibration energy harvester can convert the ambient vibration energy to electric energy, so that the lowpower microelectronic products can be wirelessly powered or selfpowered. To enhance the environmental adaptability and improve the generating efficiency, the broadband piezoelectric energy harvesting turns to be a research hotspot. The principle, piezoelectric materials, and operation modes were presented firstly. The current status of the broadband piezoelectric energy harvester was reviewed. The problems in recent research work were summarized. Finally, the future research directions were proposed. The piezoelectric energy harvesting supplies a stable, safe, and enduring way to power the microelectronic products. It has a good application prospect.

关键词

振动俘能器 / 压电式 / 宽频

Key words

vibration energy harvester / piezoelectric / broadband

引用本文

导出引用
徐振龙 1, 单小彪 2,谢涛 2. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199
XU Zhenlong1,SHAN Xiaobiao2,XIE Tao2 . A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(8): 190-199

参考文献

[1] Ramlan R, Brennan M J, Mace B R, et al. Potential benefits of a non-linear stiffness in an energy harvesting device[J]. Nonlinear Dynamics, 2010, 59(4):545-558.
[2] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting[J]. Physical Review Letters, 2009, 102(8):080601.
[3] Flynn A M, Sanders S R. Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers[J]. IEEE Transactions on Power Electronics, 2002, 17(1):8-14.
[4] Kim H S, Kim J H, Kim J. A review of piezoelectric energy harvesting based on vibration[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(6):1129-1141.
[5] Sun C L, Shi J, Bayerl D J, et al. PVDF microbelts for harvesting energy from respiration[J]. Energy and Environmental Science, 2011, 4(11):4508.
[6] Lee M, Chen C Y, Wang S H, et al. A hybrid piezoelectric structure for wearable nanogenerators[J]. Advanced Materials, 2012, 24(13):1759-1764.
[7] Wilkie W K, Bryant R G, High J W, et al. Low-cost piezocomposite actuator for structural control applications[C]// Proceedings of SPIE, Newport Beach, 2000:323-334.
[8] Schönecker A J, Daue T, Brückner B, et al. Overview on macro fiber composite applications[C]// Proceedings of SPIE, San Diego, CA, 2006:61701K-61701K-61708.
[9] Sodano H A, Park G, Inman D J. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications[J]. Mechanical Systems and Signal Processing, 2004, 18(3):683-697.
[10] Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26(11):1131-1144.
[11] Kim S B, Park H, Kim S H, et al. Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting[J]. Journal of Microelectromechanical Systems, 2013, 22(1):26-33.
[12] Baker J, Roundy S, Wright P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks[C]// Proceedings of 3rd International Energy Conversion Engineering Conference, San Francisco, California, 2005:1-12.
[13] Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting[J]. Journal of Micromechanics and Microengineering, 2008, 18(5):055017.
[14] Li W G, He S Y, Yu S D. Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3):868-876.
[15] Wu X M, Lin J H, Kato S, et al. A frequency adjustable vibration energy harvester[C]// Proceedings of PowerMEMS, Sendai, 2008:245-248.
[16] Leland E S, Wright P K. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload[J]. Smart Materials and Structures, 2006, 15(5):1413-1420.
[17] Morris D J, Youngsman J M, Anderson M J, et al. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism[J]. Smart Materials and Structures, 2008, 17(6):065021.
[18] Challa V R, Prasad M G, Shi Y, et al. A vibration energy harvesting device with bidirectional resonance frequency tunability[J]. Smart Materials and Structures, 2008, 17(1):015035.
[19] Reissman T, Wolff E M, Garcia E. Piezoelectric resonance shifting using tunable nonlinear stiffness[C]// Proceedings of SPIE, San Diego, CA, 2009:72880G-72880G-72812.
[20] 孙晓阳,王佩红,王卓,等. 一种可调频的压电式振动能量采集器[J]. 微纳电子技术,2014,51(8):518-522+541.
SUN Xiao-yang, WANG Pei-hong, WANG Zhuo, et al. Apiezoelectric vibration energy harvester with the adjustable frequency[J]. MEMS and Sensors, 2014, 51(8):518-522+541.
[21] Roundy S, Zhang Y. Toward self-tuning adaptive vibration-based microgenerators[C]// Proceedings of SPIE, Bellingham, WA, 2005:373-384.
[22] Lallart M, Anton S R, Inman D J. Frequency self-tuning scheme for broadband vibration energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(9):897-906.
[23] Wu W J, Chen Y Y, Lee B S, et al. Tunable resonant frequency power harvesting devices[C]// Proceedings of SPIE, San Diego, CA, 2006:61690A-61690A-61698.
[24] Cammarano A, Burrow S G, Barton D A W, et al. Tuning a resonant energy harvester using a generalized electrical load[J]. Smart Materials and Structures, 2010, 19(5):055003.
[25] Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting[J]. Microelectronics Journal, 2008, 39(5):802-806.
[26] Wang W, Yang T Q, Chen X R, et al. Vibration energy harvesting using a piezoelectric circular diaphragm array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59(9):2022-2026.
[27] Roundy S, Leland E S, Baker J, et al. Improving power output for vibration-based energy scavengers[J]. IEEE Pervasive Computing, 2005, 4(1):28-36.
[28] Yang Z T, Yang J S. Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5):569-574.
[29] Aldraihem O, Baz A. Energy harvester with a dynamic magnifier[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(6):521-530.
[30] Yang B, Liu J Q, Tang G, et al. A generator with nonlinear spring oscillator to provide vibrations of multi-frequency[J]. Applied Physics Letters, 2011, 99(22):223505.
[31] Liu H L, Xu T Z, Huang Z Y, et al. Parametric design for a piezoelectric cantilever carrying oscillators to harvest multi-frequency vibration energy[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 41(4):389-405.
[32] Tang L H, Yang Y W. A nonlinear piezoelectric energy harvester with magnetic oscillator[J]. Applied Physics Letters, 2012, 101(9):094102.
[33] Daqaq M, Masana R, Erturk A,et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion[J]. Applied Mechanics Reviews, 2014, 66(4):040801-040801-23
[34] Stanton S C, McGehee C C, Mann B P. Reversible hysteresis for broadband magnetopiezoelastic energy harvesting[J]. Applied Physics Letters, 2009, 95(17):174103.
[35] Sebald G, Kuwano H, Guyomar D, et al. Simulation of a duffing oscillator for broadband piezoelectric energy harvesting[J]. Smart Materials and Structures, 2011, 20(7):075022.
[36] Sebald G, Kuwano H, Guyomar D, et al. Experimental duffing oscillator for broadband piezoelectric energy harvesting[J]. Smart Materials and Structures, 2011, 20(10):102001.
[37] Lin J T, Lee B, Alphenaar B. The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency[J]. Smart Materials and Structures, 2010, 19(4):045012.
[38] Ferrari M, Ferrari V, Guizzetti M, et al. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters[J]. Sensors and Actuators A-Physical, 2010, 162(2):425-431.
[39] Hajati A, Kim S G. Ultra-Wide Bandwidth piezoelectric energy harvesting[J]. Applied Physics Letters, 2011, 99(8):083105.
[40] Arrieta A F, Hagedorn P, Erturk A, et al. A piezoelectric bistable plate for nonlinear broadband energy harvesting[J]. Applied Physics Letters, 2010, 97(10):104102.
[41] Sneller A J, Cette P, Mann B P. Experimental investigation of a post-buckled piezoelectric beam with an attached central mass used to harvest energy[C]// Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Durham, North Carolina, 2011:497-509.
[42] Cottone F, Gammaitoni L, Vocca H, et al. Piezoelectric buckled beams for random vibration energy harvesting[J]. Smart Materials and Structures, 2012, 21(3):035021.
[43] Friswell M I, Ali S F, Bilgen O, et al. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13):1505-1521.
[44] Mak K H, McWilliam S, Popov A A,et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop[J]. Journal of Sound and Vibration, 2011, 330(25):6184-6202.
[45] Halim M A, Park J Y. Low frequency vibration energy harvester using stopper-engaged dynamic magnifier for increased power and wide bandwidth[J]. Journal of Electrical Engineering and Technology, 2016, 11(3):709-716.
[46] Jiang W A, Chen L Q. Snap-through piezoelectric energy harvesting[J]. Journal of Sound and Vibration, 2014, 333(18):4314-4325.
[47] 陈仲生,杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究[J]. 物理学报,2011,60(7):074301.
CHEN Zhong-sheng, YANG Yong-min. Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams[J]. Acta Physica Sinica, 2011, 60(7):074301.
[48] 孙舒,曹树谦. 双稳态压电悬臂梁发电系统的动力学建模及分析[J]. 物理学报,2012,61(21):210505.
SUN Shu, CAO Shu-qian. Dynamic modeling and analysis of a bistable piezoelectric cantilever power generator system[J]. Acta Physica Sinica, 2012, 61(21):210505.
[49] 崔岩,王飞,董维杰,等. 非线性压电式能量采集器[J]. 光学 精密工程,2012,20(12):2737-2743.
CUI Yan, WANG Fei, DONG Wei-jie, et al. Nonlinear piezoelectric energy harvester[J]. Optics and Precision Engineering, 2012, 20(12):2737-2743.
[50] 唐炜,王小璞,曹景军. 非线性磁式压电振动能量采集系统建模与分析[J]. 物理学报,2014,63(24):240504-240504.
TANG Wei, WANG Xiao-pu, CAO Jing-jun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics[J]. Acta Physica Sinica, 2014, 63(24):240504-240504.
[51] 姚明辉,李印波,张伟. 纵向辅磁双稳态压电悬臂梁非线性动力学[J]. 北京工业大学学报,2015,41(11):1756-1760.
YAO Ming-hui, LI Yin-bo, ZHANG Wei. Nonlinear dynamicson auxiliary magnet for a bistable piezoelectric cantilever beam[J]. Journal of Beijing University of Technology, 2015, 41(11):1756-1760.
[52] 周生喜,曹军义,Erturk A,等. 压电磁耦合振动能量俘获系统的非线性模型研究[J]. 西安交通大学学报,2014,48(1):y1-y6.
ZHOU Sheng-xi, CAO Jun-yi, Erturk A, et al. Nonlinear model for piezoelectric energy harvester with magnetic coupling[J]. Journal of Xi’an Jiaotong University, 2014, 48(1):y1-y6.
[53] 沈威,陶孟仑,陈定方,等. 阵列式压电磁耦合能量收集器的建模与仿真分析[J]. 武汉理工大学学报,2015,37(2):116-120.
SHEN Wei, TAO Meng-lun, CHEN Ding-fang, et al. Modeling and simulation of piezomagnetoelastic energy harvester with beam array[J]. Journal of Wuhan University of Technology, 2015, 37(2):116-120.
[54] 高毓璣,冷永刚,范胜波,等. 弹性支撑双稳压电悬臂梁振动响应及能量采集研究[J]. 物理学报,2014,9:62-74.
GAO Yu-ji, LENG Yong-gang, FAN Sheng-bo, et al. Studies on vibration response and energy harvesting of elastic-supported bistable piezoelectric cantilever beams[J]. Acta Physica Sinica, 2014, 9:62-74.
[55] Fan K Q, Chao F B, Zhang J G, et al. Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester[J]. Energy Conversion and Management, 2014, 86:561-567.
[56] 李海涛,秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学,2014,35(6):652-662.
LI Hai-tao, QIN Wei-yang. Bifurcation and chaos thresholds of bistable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2014, 35(6):652-662.
[57] Xu C D, Ren B, Liang Z, et al. Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester[J]. Applied Physics Letters, 2012, 101(22):223503.
[58] 刘少刚,程千驹,赵丹,等. 一种宽频压电能量收集装置的建模与实验研究[J]. 振动与冲击, 2016, 35(24):27-32.
LIU Shao-gang,CHENG Qian-ju, Zhao Dan, et al. Modeling and experiment of a piezoelectric energy harvester with wide operation bandwidth[J]. Journal of Vibration and Shock, 2016, 35(24):27-32.
[59] Liu H C, Tay C J, Quan C G,et al. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power[J]. Journal of Microelectromechanical Systems, 2011, 20(5):1131-1142.
[60] Challa V R, Prasad M G, Fisher F T. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching[J]. Smart Materials and Structures, 2009, 18(9):095029.
[61] Tadesse Y, Zhang S J, Priya S. Multimodal energy harvesting system: piezoelectric and electromagnetic[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5):625-632.
[62] Karami M A, Inman D J. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems[J]. Journal of Sound and Vibration, 2011, 330(23):5583-5597.
[63] Mahmoudi S, Kacem N, Bouhaddi N. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions[J]. Smart Materials and Structures, 2014, 23(7):075024.
[64] Sang Y J, Huang X L, Liu H X, et al. A vibration-based hybrid energy harvester for wireless sensor systems[J]. IEEE Transactions on Magnetics, 2012, 48(11):4495-4498.
[65] Li P, Gao S Q, Niu S H, et al. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester[J]. Smart Materials and Structures, 2014, 23(6):065016.
[66] Yu H, Zhou J L, Yi X Z, et al. A hybrid micro vibration energy harvester with power management circuit[J]. Microelectronic Engineering, 2015, 131:36-42.
[67] Shan X B, Xu Z L, Song R J, et al. A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester[J]. Ferroelectrics, 2013, 450(1):57-65.
[68] Wang H Y, Tang L H, Guo Y, et al. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University-Science A, 2014, 15(9):711-722.
[69] Xu Z L, Shan X B, Chen D P, et al. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms[J]. Applied Sciences, 2016, 6(1):10.
[70] Umeda M, Nakamura K, Ueha S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator[J]. Japanese Journal of Applied Physics, 1996, 35(Part 1, No. 5B):3267-3273.
[71] Rastegar J, Pereira C, Nguyen H L. Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration[C]// Proceedings of SPIE, San Diego, CA, 2006:617101.
[72] Galchev T, Aktakka E E, Najafi K. A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations[J]. Journal of Microelectromechanical Systems, 2012, 21(6):1311-1320.
[73] Wei S, Hu H, He S Y. Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion[J]. Smart Materials and Structures, 2013, 22(10):105020.
[74] Liu H C, Lee C K, Kobayashi T, et al. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers[J]. Smart Materials and Structures, 2012, 21(3):035005.
[75] 秦利锋,韩超然,杨磊,等. 一种基于碰撞的压电宽频能量收集装置[J]. 厦门大学学报(自然科学版),2014,53(4):502-507.
QIN Li-feng, HAN Chao-ran, YANG Lei, et al. A broadband piezoelectric vibration energy harvester based on impact mechanism[J]. Journal of Xiamen University (Natural Science), 2014, 53(4):502-507.
[76] Wickenheiser A M, Garcia E. Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation[J]. Smart Materials and Structures, 2010, 19(6):065020.
[77] Tang Q C, Yang Y L, Li X X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion[J]. Smart Materials and Structures, 2011, 20(12):125011.
[78] Pillatsch P, Yeatman E M, Holmes A S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications[J]. Sensors and Actuators A-Physical, 2014, 206:178-185.
[79] Jung S M, Yun K S. Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation[J]. Applied Physics Letters, 2010, 96(11):111906.
[80] Han D, Yun K S. Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration[J]. Microsystem Technologies, 2014, 21(8):1669-1676.
[81] Reilly E, Miller L, Fain R,et al. A study of ambient vibrations for piezoelectric energy conversion[C]// Proceedings of PowerMEMS, Washington, DC, 2009:312-315.
[82] Harne R L,Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures, 2013, 22(2):023001.
[83] Pellegrini S P, Tolou N, Schenk M,et al. Bistable vibration energy harvesters: a review[J]. Journal of Intelligent Material Systems and Structures, 2012, 24(11):1303-13.

PDF(1224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/