针对重型车辆悬架系统的非线性优化问题,提出了采用粒子群算法进行悬架系统优化设计方法。本文以四分之一汽车模型为研究对象,以车轮最大动载荷最小化为目标,以非簧载质量的固有频率为约束条件,建立了改善被动悬架系统性能的优化模型。通过粒子群算法求解该优化问题,以少量的迭代次数得到了性能优良的悬架参数,如悬架刚度和悬架阻尼。对本文设计的悬架系统进行时域和频域性能分析,并详细讨论了本文方法与遗传算法优化的本质区别,结果表明,粒子群算法可以快速地得到一个较好的优化结果,这为设计人员后续的修改设计提供重要参数,同时为解决含有非线性问题的新型悬架系统优化设计提供了一种新的可行方法。
Abstract
In this paper, an optimization design method based on the Particle Swarm Optimization (PSO) technique was proposed for the enhancement of the passive suspension system performance of heavy vehicles. The optimization problem based on a quartervehicle model aims to minimize the dynamic tire load subject to constraints on the natural frequency of the unsprung mass. PSO was applied to solve the optimization problem for obtaining optimum parameters, such as the suspension damping coefficient and spring stiffness. In order to assess the obtained design parameters, the suspension performance was estimated in time and frequency domains for different road excitations. And some essential differences between PSO and Genetic Algorithm (GA) were discussed in detail. The results show that, for the same suspension system, the proposed method can obtain the optimum designed parameters quickly compared with the previous designed parameters using the GA, which will provide important parameters for the subsequent revised design.
关键词
粒子群算法 /
重型车辆悬架 /
优化设计 /
时域分析 /
频域分析
{{custom_keyword}} /
Key words
particle swarm algorithm /
heavy vehicle suspension /
optimization design /
time domain analysis /
frequency domain analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 喻 凡. 车辆动力学及其控制[M]. 北京:机械工业出版社, 2010.
YU Fan. Vehicle dynamics and control [M]. Beijing: China Machine Press, 2010.
[2] Chooi W W, Oyadiji S O. Mathematical modelling, analysis and design of magnetorheological (MR) dampers [J]. ASME Journal of Vibration and Acoustics, 2009, 131(6): 1747-1750.
[3] Simon D, Ahmadian M. Vehicle evaluation of the performance of magnetorheological dampers for heavy truck suspensions [J]. ASME Journal of Vibration and Acoustics, 2001, 123(3): 365-375.
[4] Sun L, Deng X. Predicting vertical dynamic loads caused by vehicle–pavement interaction [J]. American Society of Civil Engineers, Journal of Transportation Engineering, 1998, 124(5): 470–478.
[5] Sun L, Cai X, Yang J. Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion [J]. Journal of Sound and Vibration, 2007, 301(1-2): 18–27.
[6] Paeng J K, Arora J S. Dynamic response optimization of mechanical systems with multiplier methods [J]. ASME Journal of Mechanical Design, 1989, 111(1): 73-80.
[7] 陈宝林. 最优化理论与算法[M]. 北京:清华大学出版社, 2005.
CHEN Bao-lin. Optimization theory and algorithm [M]. Beijing: Tsinghua University Press, 2005.
[8] Baumal A E, Mcphee J, Calamai P H. Application of genetic algorithms to the design optimization of an active vehicle suspension system [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1-4): 87-94.
[9] 杜 恒, 魏建华. 基于遗传算法的连通式油气悬架平顺性与道路友好性参数优化[J]. 振动与冲击, 2011, 30(8): 133-138.
DU Heng, WEI Jian-hua. Parameters optimization of interconnected hydro-pneumatic suspension for road comfort and road-friendliness based on genetic algorithm [J]. Journal of Vibration and Shock, 2011, 30(8): 133-138.
[10] Zehsaz M, Sadeghi M H, Ettefagh M M. Tractor cabin’s passive suspension parameters optimization via experimental and numerical methods [J]. Journal of Terramechanics, 2011, 48(6): 439–450.
[11] Sunwoo M, Cheok K C, Huang N J. Model reference adaptive control for vehicle active suspension systems [J]. IEEE Transactions on Industrial Electronics, 1991, 38(3):217–222.
[12] 张顶学. 遗传算法与粒子群算法的改进及应用[D]. 武汉:华中科技大学, 2007.
Zhang Ding-xue. Modifications and applications of genetic algorithm and particle swarm optimization [D]. Wuhan: Huazhong University of Science & Technology, 2007.
[13] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85(6): 317–325.
[14] Choi S B, Kim W K. Vibration control of a semi-active suspension featuring electrorheological fluid dampers [J]. Journal of Sound and Vibration, 2000, 234(3): 537–546.
[15] Elmadany M M. An analytical investigation of isolation systems for cab ride [J]. Computers and Structures, 1987, 27(5): 679–688.
[16] Fischer D, Isermann R. Mechatronic semi-active and active vehicle suspensions [J]. Control Engineering Practice, 2004, 12(11): 1353-1367.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}