弹性边界径向功能梯度压电环板面内振动

胡统号,沈纪苹,姚林泉

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 225-237.

PDF(6383 KB)
PDF(6383 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 225-237.
论文

弹性边界径向功能梯度压电环板面内振动

  • 胡统号,沈纪苹,姚林泉
作者信息 +

Inplane vibration of radial functional graded piezoelectric annular plates with elastic boundary

  • HU Tonghao, SHEN Jiping, YAO Linquan
Author information +
文章历史 +

摘要

基于二维线弹性体理论,推导了弹性边界径向功能梯度压电(FGPM)环板面内自由振动的控制微分方程,利用微分求积法(DQM)将控制微分方程和边界条件离散化,得到求解频率的特征方程。假设材料的物性参数按幂函数形式变化,通过数值求解得到了径向FGPM环板面内自由振动的无量纲频率。考虑了弹性边界和电学开路组合边界条件下径向FGPM环板的梯度指数p、内外径比η、弹性边界的弹性刚度k和压电效应对无量纲频率的影响,最后研究了径向FGPM环板模态特性。

Abstract

Based on the twodimension linear elastic theory, the inplane free vibration differential equations for radial functionally graded piezoelectric (FGPM) annular plates were derived. Using the differential quadrature method (DQM), the differential equations and boundary conditions were discretized and the characteristic equation of the frequency was obtained. Assuming that the physical parameters of the material vary in the form of a power function, the dimensionless natural frequency of inplane free vibration of FGPM annular plates were solved numerically. The influence of the gradient exponent p, the inner to outer diameter ratio η, the stiffness of elastic boundaries k and piezoelectric effect of the radial FGPM annular plate on the dimensionless frequency was considered under the combination of elastic boundary and the open electrical boundary. Finally, the modal characteristics of radial FGPM annular plate were studied.

关键词

弹性支撑边界 / 功能梯度环板 / 面内自由振动 / 微分求积法 / 模态特性

Key words

elastic boundary;functionally graded annular plates / in-plane free vibration / differential quadrature method / modal characteristics

引用本文

导出引用
胡统号,沈纪苹,姚林泉. 弹性边界径向功能梯度压电环板面内振动[J]. 振动与冲击, 2018, 37(8): 225-237
HU Tonghao, SHEN Jiping, YAO Linquan. Inplane vibration of radial functional graded piezoelectric annular plates with elastic boundary[J]. Journal of Vibration and Shock, 2018, 37(8): 225-237

参考文献

[1]蒲育, 滕兆春, 赵海英. 四边弹性约束矩形板面内自由振动的DQM求解[J]. 振动与冲击, 2016, 35(12): 55-60.
PU Yu, TENG Zhao-chun, ZHAO Hai-ying. In-plane free vibration analysisforrectangularplateswithelasticrestrainededgesby Differential Quadrature Method[J]. Journal of Vibration and Shock,2016, 35(12): 55-60.
[2] AMBATI G, BELL J F W, SHARP J C K. In-plane vibrations of annular rings[J]. Journal of Sound and Vibration, 1976, 47(3): 415-432.
[3]Irie T, Yamada G, Muramoto Y. Natural frequencies of in-plane vibration of annular plates[J]. Journal of Sound and Vibration, 1984, 97(1):171-175.
[4]陈伟球, 叶贵如, 蔡金标, 等. 横观各向同性功能梯度材料矩形板的自由振动[J]. 振动工程学报, 2001, 14(3): 263-267.
CHEN Wei-qiu, YE Gui-ru, CAI Jin-biao,atal.Free vibration of transversely isotropic FGM rectangular plates[J]. Journal of Vibration Engineering, 2001, 14(3): 263-267.
[5]CHEN W Q, DING H J. On free vibration of a functionally graded piezoelectric rectangular plate[J]. ActaMechanica, 2002, 153(3-4): 207-216.
[6]ZHONG Z, YU T. Vibration of a simply supported functionally graded piezoelectric rectangular plate[J]. Smart materials and structures, 2006, 15(5): 1404-1412.
[7]FARAG N H, PAN J. Modal characteristics of in-plane vibration of circular plates clamped at the outer edge[J]. The Journal of the Acoustical Society of America, 2003, 113(4): 1935-1946.
[8]PARK C I. Frequency equation for the in-plane vibration of a clamped circular plate[J]. Journal of Sound and Vibration, 2008, 313(1): 325-333.
[9]BASHMAL S, BHAT R, RAKHEJA S. In-plane free vibration of circular annular disks[J]. Journal of Sound and Vibration, 2009, 322(1): 216-226.
[10] BASHMAL S, BHAT R, RAKHEJA S. In-plane free vibration analysis of an annular disk with point elastic support[J]. Shock and vibration, 2011, 18(4): 627-640.
[11] HASHEMIS H, FADAEE M, ES’HAGHI M. A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates[J]. International Journal of Mechanical Sciences, 2010, 52(8): 1025-1035.
[12] HASHEMI S H, KHORSHIDI K, ES’HAGHI M, et al. On the effects of coupling between in-plane and out-of-plane vibrating modes of smart functionally graded circular/annular plates[J]. Applied Mathematical Modelling, 2012, 36(3): 1132-1147.
[13]KIM C B, Cho H S, BEOM H G. Exact solutions of in-plane natural vibration of a circular plate with outer edge restrained elastically[J]. Journal of Sound and Vibration, 2012, 331(9): 2173-2189.
[14]蒲育, 滕兆春, 房晓林. 圆环板面内自由振动的 DQM 求解[J]. 振动与冲击, 2013, 32(24): 152-156.
PU Yu, TENG Zhao-chun, FANG Xiao-lin. In-plane free vibration of circular annular plates with differential quadrature method[J].Journal of Vibration and Shock, 2013, 32(24): 152-156.
[15]滕兆春, 蒲育, 房晓林. FGM圆环板面内自由振动的 DQM 求解[J]. 北京理工大学学报, 2014, 12: 1211-1216
TENG Zhao-chun, PU Yu, FANG Xiao-lin. In-plane free vibration analysis for FGM annular plates by Differential Quadrature Method[J].Transactions of Beijing Institute of Technology,2014, 12: 1211-1216
[16]滕兆春,蒲育.温度影响下FGM圆环板的面内自由振动分析[J]. 振动与冲击, 2015, 34(9): 210-217.
TENG Zhao-chun, PU Yu, In-plane free vibration of FGM annular plates considering temperature effect [J].Journal of Vibration and Shock, 2015, 34(9): 210-217.
[17]滕兆春,余文卿,蒲育.变厚度圆环板的面内自由振动分析[J]. 兰州理工大学学报, 2015, 41(3): 168-172.
TENG Zhao-chun, YU Wen-qing, PU Yu. In-plane free vibration of circular annular plates with variable thickness [J].Journal of Lanzhou University of Technology, 2015, 41(3): 168

PDF(6383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/