颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响

苏凡,张航,尹忠俊

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 238-244.

PDF(1210 KB)
PDF(1210 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 238-244.
论文

颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响

  • 苏凡,张航,尹忠俊
作者信息 +

Effects of rheology behaviour and material parameters of granular material on energy dissipation of a particle damper

  • SU Fan, ZHANG Hang, YIN Zhongjun
Author information +
文章历史 +

摘要

颗粒阻尼技术(NOPD),作为一种简单有效的振动控制手段被广泛应用于各种场合。本文基于离散单元法仿真,结合NOPD中颗粒系统的运动状态对阻尼效果进行分析,探究不同振动条件对阻尼性能的影响,从细观尺度阐述颗粒系统的能量耗散机理。并通过正交试验,考察颗粒的密度、剪切模量、恢复系数、静摩擦系数、滚动摩擦系数等材料参数对损耗因子的影响。研究结果表明,颗粒系统表现出不同运动状态时的流变学行为及细观结构导致了阻尼效果的变化,颗粒系统在浮力对流状态时表现出最优的阻尼效果。不同的颗粒材料参数在不同颗粒系统运动状态条件下对系统阻尼的影响程度不同。

Abstract

The nonobstructive particle damping (NOPD) has been widely used for its simplicity and high efficiency in attenuating structure vibration. In this paper, the discrete element method (DEM) was applied in the simulation. The damping effectiveness of NOPD was analyzed combining with the motion modes of the granular system to obtain the influence of different vibration conditions on damping property. And the energy dissipation mechanism was illustrated at the mesoscale. The effects of the material parameters of particle on the loss factor including density, shear modulus, coefficient of restitution, coefficient of static friction, coefficient of rolling friction were also studied based on the orthogonal experiment method. The results show that the different motion modes of rheology behaviors and the mesostructure lead to variations of the damping effectiveness. The NOPD achieves the optimal performance and better operation in the buoyancy convection state. In addition, the effective weights of the material parameters of particle are different. The coefficient of static friction and density play important roles in the damping effectiveness of the granular system.

关键词

颗粒阻尼 / 流变行为 / 能量耗散 / 正交试验

Key words

Non-obstructive Particle Damping / rheology behaviour / energy dissipation / orthogonal experiment method

引用本文

导出引用
苏凡,张航,尹忠俊. 颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响[J]. 振动与冲击, 2018, 37(8): 238-244
SU Fan, ZHANG Hang, YIN Zhongjun. Effects of rheology behaviour and material parameters of granular material on energy dissipation of a particle damper[J]. Journal of Vibration and Shock, 2018, 37(8): 238-244

参考文献

[1] 鲁 正,吕西林,闫维明. 颗粒阻尼技术的研究综述[J]. 振动与冲击, 2013, 32(7):1-7.
LU Zheng, LU Xi-lin, YAN Wei-ming. A survey of particle damping techology [J]. Journal of vibration and shock, 2013,32 (7) 1-7.
[2] J.M. Bajkowski, B. Dyniewicz, C.I. Bajer. Damping properties of a beam with vacuum-packed granular damper[J]. Journal of sound and vibration, 2015, 341: 74-85.
[3] Michon G, Almajid A, Aridon G. Soft hollow particle damping identification in honeycomb structures[J]. Journal of Sound and Vibration, 2013, 332(3): 536-544.
[4] Yang M Y. Development of master design curves for particle impact dampers[D]. The Pennsylvania State University, 2003.
[5] 夏兆旺,单颖春,刘献栋. 基于悬臂梁的颗粒阻尼实验[J]. 航空动力学报,2007, 22(10): 1737-1741.
XIA Zhao-wang, SHAN Ying-chun, LIU Xian-dong. Experimental research on particle damping of cantilever beam[J]. Journal of Aerospace Power, 2007, 22(10): 1737-1741.
[6] 周宏伟. 颗粒阻尼及其控制的研究与应用[D]. 南京: 南京航天航空大学, 2008.
ZHOU Hong-wei. Research and application of particle damping and its control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[7] 段勇,陈前,林莎. 颗粒阻尼对直升机旋翼桨叶减振效果的试验[J]. 航空学报, 2009, 30(11): 2113-2118.
DUAN Yong, CHEN Qian, LIN Sha. Experiments of Vibration Reduction Effect of Particle Damping on Helicopter Rotor Blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2113-2118.
[8] Wong C, Daniel M, Rongong J. Energy dissipation prediction of particle dampers[J]. Journal of Sound and Vibration, 2009, 319(1): 91-118.
 [9] Xiao W, Li J, Wang S, et al. Study on vibration suppression based on particle damping in centrifugal field of gear transmission[J]. Journal of Sound and Vibration, 2016, 366: 62-80.
[10] Zhang K, Chen T, Wang X, et al. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper[J]. Journal of Sound and Vibration, 2016, 364: 30-43.
[11] Mao, K., Wang, M.Y., Xu, Z. et al. DEM simulation of particle damping[J]. Powder Technology, 2004, 142, (2): 154-165.
[12] R.D. Mindlin, Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949(16): 259-268.
[13] R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953(20):327-344.
[14] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3):239-250.
[15] JIANG Z H, WANG Y Y, WU J. Subharmonic motion of granular particles under vertical vibrations[J]. Epl, 2006,74(3):417-423.
[16] Ehrichs, E., Jaeger, H., Karczmar, G. S ,et al. Granular convection observed by magnetic resonance imaging[J]. Science, 1995(267):1632.
[17] Eshuis, P., van der Weele, K., van der Meer, et al. Granular leidenfrost effect: Experiment and theory of floating particle clusters[J]. Physical review letters, 2005( 95): 258001.
[18] Yang, M.Y. Development of Master Design Curves for Particle Impact Dampers, Doctoral Thesis, The Pennsylvania State University,2003.
[19] Mujica, N. & Melo, F. Experimental study of solid-liquid-type transitions in vibrated granular layers and the relation with surface waves[J]. Physical Review E, 2000(63): 011303.
[20] Sanchez M., Rosenthal G., Pugnaloni L. A. Universal Response of Optimal Granular Damping Devices[J]. Journal of Sound and Vibration, 2012, 331 (20): 4389-4394.
[21] 胡溧. 颗粒阻尼的机理与特性研究[D]. 华中科技大学, 2008.
HU Li. Research on the Mechanics and Characteristics of Particle Damping[D].Wuhan:Huazhong University of Science & Technology,2008.

PDF(1210 KB)

Accesses

Citation

Detail

段落导航
相关文章

/