非道路柴油机工作条件恶劣,对整机振动与噪声性能提出更高的要求。以某非道路高压共轨柴油机为研究对象,建立了整机多体动力学模型,通过机体与曲轴模态测试,验证了整机有限元模型以及多体动力学模型的准确性;通过建立阀系动力学模型、活塞动力学模型以及轴系动力学模型,计算获得阀系载荷、活塞敲击载荷以及主轴承载荷等主要激振力;在此基础上,研究了不同激励对整机的振动与噪声的影响。研究结果表明:随着载荷激励的施加,发动机表面振动速度级也相应的增加;加载阀系载荷后,发动机在高频区域振动速度级小幅增加,阀系载荷对整机500Hz、1000Hz频段的振动速度级影响较大;加载活塞侧击力后,活塞的二阶运动激励对于特征点的中高频振动影响较大;随着载荷激励的增加,各部件的表面辐射声功率级基本呈增加趋势,低转速下各方案影响差异大,中高转速下各方案影响差异变小,阀系载荷的加载对气缸盖罩振动速度级影响较大,活塞侧击力是各主要壳体件怠速机械噪声的主要影响因素。
Abstract
The bad working conditions of nonroad diesel engines have high requirements on the vibration and noise performance of the whole machine. A nonroad high pressure common rail diesel engine was used as the studying object in this paper. A multibody dynamics model for the engine was established. Through the body and crankshaft modal testing, the accuracy of the whole finite element model and the multibody dynamic model were verified. Through establishing the valve dynamic model, the piston dynamic model and the shaft dynamics model, the main exciting force of the valve train load, the piston knock load and the main bearing load could be calculated. This paper also studied the different excitation on the machine vibration and noise. The results show that with the application of load excitation, the surface vibration velocity of the engine increases correspondingly. After loading the valve train, the vibration speed of the engine increases slightly in the high frequency range. At 500 Hz and 1 000 Hz, the influence of velocity is larger. The secondstage motivation of piston exerted greater influence on the midand highfrequency vibration of the characteristic points after loading the piston side striking force. With the increase of load excitation, the surface acoustic power level of each component basically increases. The load of the valve train has great influence on the vibration velocity of the cylinder head cover, and the piston side striking force is the main influence factor of the idle mechanical noise of the main shell parts.
关键词
非道路 /
高压共轨 /
柴油机 /
不同激励 /
振动与噪声
{{custom_keyword}} /
Key words
non-road /
high pressure common rail /
diesel engine /
different excitation /
vibration and noise
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陆际清,沈祖京,孔宪清等.汽车发动机设计[M].北京:清华大学出版社,1993.
[2] 吴炎庭,袁卫平主编.内燃机噪声振动与控制[M].北京:机械工业出版社,2005.
[3] 曹树谦,张文德.振动结构模态分析 —理论、实验与应用[M].天津:天津大学出版社,2001.
[4] Y. Charles Lu, Michael E. Anderson. On the Use of Spatial Transmissibility to Evaluate the NVH Performance of Engine Cover Assembly[C]. 2002, SAE 2002-01-0458
[5] Y. Charles Lu, Haran Periyathamby. Spatial Transmissibility of Plastic Cylinder-Head Covers[C]. 2005,SEA 2005-01-1515 .
[6] Abdelkrim Zouani. On the Effectiveness of the Spatial Transmissibility to Drive the NVH Design of Cylinder Head Covers[C]. 2006,SAE 2006-01-0280.
[7] Martin Sopouch, Wolfgang Hellinger. Simulation of Engine’s Structure Borne Noise Excitation Due to the Timing Chain Drive[C]. 2002, SAE 2002-01-0451
[8] Matthias Schneider, Hans-Peter Lahey. CAE Process to Eliminate Powertrain Noise and Vibration[C]. 2002, SAE 2002-01-0459.
[9] Kazuyuki Yamamoto , Tadakazu Naritomi. Design Optimi-zation of Engine Bolts in Noise and Vibration Performance Development using FEM[C]. 2006,SAE 2006-01-0282.
[10] Namhoon Lee , Wonsik Park. NVH Development of EU5 2.0L and 2.2L Diesel Engine[C]. 2011, SAE 2011-01-0932.
[11] Masahiro Akei, Takayuki Koizumi. Prediction of Vibration at Operator Position and Transfer Path Analysis Using Engine Multi Body Dynamics Model[C].2014 SAE2014-01-2316.
[12] 晋兵营,李冠峰,熊本俊等.YT4135Z柴油机机体动态响应分析[J]. 内燃机工程,2005,26(2):58-61
Jing Bingying,Li Guanfeng,Xiong Benjun etc. Response Analysis on YT4135Z Diesel Engine Block[J]. Chinese In-ternal Combustion Engine Engineering. 2005,26(2):58-61
[13] 杜宪峰,舒歌群,卫海桥等. 基于模态方法的柴油机机体结构建模技术研究[J]. 振动与冲击,2015,34(21):157-161
Du Xianfeng,Shu Gequn,Wei Haiqiao etc. Body structural modeling technique for diesel engines based on modal method[J]. Journal of Vibration and Shock. 2015,34(21):157-161
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}