剃齿啮合的接触特性分析及中凹误差形成机理研究

蔡安江1,刘磊1,李玲1,张华1,杨选文2,郑涛3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 68-74.

PDF(1752 KB)
PDF(1752 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (8) : 68-74.
论文

剃齿啮合的接触特性分析及中凹误差形成机理研究

  • 蔡安江1,刘磊1,李玲1,张华1,杨选文2,郑涛3
作者信息 +

Analysis on contact characteristic and mechanism of concaveerrors caused by shaving

  • CAI Anjiang1, LIU Lei1, LI Ling1, ZHANG Hua1, YANG Yuanwen2, ZHEN Tao3
Author information +
文章历史 +

摘要

探索剃齿过程中接触特性对齿形中凹误差的影响规律,对研究中凹误差形成机理具有重要的理论和实际意义。基于弹塑性理论和齿面承载接触分析技术(loaded tooth contact analysis,LTCA),构建力学模型分析不同载荷条件下剃齿啮合接触特性,阐述了中凹误差形成机理。应用有限元法明确了不同载荷条件下的齿面接触应力及齿廓弹塑性变形区域的划分,并与剃齿试验相比较。结果表明:随着载荷的增加齿廓上塑性变形区域随之非线性增大;齿根部位较之齿顶所受的应力和变形量更大,峰值出现在节圆附近的中部位置,该区域最易出现塑性变形,同时随着剃齿低周啮合,塑性变形量不断累积,齿形误差复映,最终会在齿廓上出现明显的中凹误差现象;有限元仿真的接触应力和弹塑性区域划分结果可靠,试验验证理论分析及研究结论正确。

Abstract

Considering the influence of dynamic contact characteristic in gear shaving is of great significance for analyzing the mechanism of concaveerrors caused by shaving. Here, a mechanical model was established by the elastoplastic theory and loaded tooth contact analysis (LTCA). The meshing contact characteristic under different loading conditions was obtained by corresponding calculation methods with the model. The formation mechanism of the concave error was described. In order to verify the correctness of the calculation, the data of contact stressstrain and the partition of elastoplastic deformation were identified by the finite element method (FEM). The shaving experiment was performed to verify the theoretical analysis. The result shows that the area of plastic deformation increases nonlinearly with the load. The stress of the dedendum area is larger than the addendum’s and the maximum of stressstrain appears in areas near the pitchcircle (PC). The accumulation of plastic deformation and mapping of the errors in the periodic shaving make obvious concave errors. Compared with simulated results of FEM and shaving test, the values of stress and the partition of plastic deformation are reliable, and the conclusion about transmission performance of gear shaving are correct.

关键词

剃齿 / 中凹误差 / 弹塑性变形 / 齿面承载接触分析 / 有限元法

Key words

gear shaving / concave-errors / elastoplastic deformation / loaded tooth contact analysis;finite element method

引用本文

导出引用
蔡安江1,刘磊1,李玲1,张华1,杨选文2,郑涛3. 剃齿啮合的接触特性分析及中凹误差形成机理研究[J]. 振动与冲击, 2018, 37(8): 68-74
CAI Anjiang1, LIU Lei1, LI Ling1, ZHANG Hua1, YANG Yuanwen2, ZHEN Tao3. Analysis on contact characteristic and mechanism of concaveerrors caused by shaving[J]. Journal of Vibration and Shock, 2018, 37(8): 68-74

参考文献

[1] Tisza M. Numerical modeling and simulation in sheetmetal forming [J]. Journal of Materials Processing Technology, 2004,151(1/3):58-62.
[2] Litvin F.L., Lu J. Computerized design and generation of double circular-archelical gears with low transmission errors[J]. Computer Methods In Applied Mechanics And Engineering, 1995,127:57-86.
[3] 唐进元, 卢延峰, 周超. 有误差的螺旋锥齿轮传动接触分析[J]. 机械工程学报, 2008,44(7):16-23.
TANG J, LU Y, ZHOU C. Error Tooth Contact Analysis of Spiral Bevel Gears Transmission[J]. Journal of Mechanical Engineering, 2008,44(7):16-23.
[4] Moriwaki I., Fujita M. Effect of cutter performance on finished tooth form in gear shaving[J]. Journal Of Mechanical Design, 1994,116(3):701-705.
[5] Moriwaki Ichiro, Fujita Masakatsu, Okamoto Takashi,et al. Numerical analysis of tooth forms of shaved gears[J]. JSME, International Journal Series III, 1990,33(7):608-613.
[6] ZHANG Yu, YAN Hong-zhi, ZENG Tao,et al. Tooth surface geometry optimization of spiral bevel and hypoid gears generated by duplex helical method with circular profile blade[J]. J Cent South Univ, 2016,23:544-554.
[7] 梁锡昌, 吕明, 郑晓华. 剃齿过程中刀齿与轮齿弯曲变形分析[J]. 重庆大学学报(自然科学版), 1998(05):58-62.
Xichang L, Ming L, Xiaohua Z. The Analysis of Bending Deformation of Cutter Tooth and Gear Tooth During Shaving Process[J]. Journal of Chongqing University, 1998(05):58-62.
[8] 左俊. 剃齿加工仿真及齿形中凹误差机理研究 [D]. 重庆大学; 2012.
[9] 吴序堂. 齿轮啮合原理[M]. 西安: 西安交通大学出版社; 2009.
[10] JIANG Jinke, FANG Zongde. Design and analysis of modified cylindrical gears with a higher-order transmission error[J]. Mechanism and Machine Theory, 2015,88:141-152.
[11] Umezawa Kiyohiko. Deflections and Moments Due to a Concentrated Load on a Rack-Shaped CantileverPlate vvith Finite Width for Gears[J]. Bulletin of the JSME, 1972,15(79):116-130.
[12] Johnson K. L. Contact Mechanics[M]. Combridge: Combridge University Press; 1985.
[13] 吕明, 冯肇锡, 徐璞. 剃齿切削力的研究[J]. 太原工业大学学报, 1987,4:61-73.
LV M, FENG Z. The Research On Shaving Force[J]. Journal of Taiyuan University of Technology, 1987,4:61-73.
[14] Celik M. Comparison of three teeth and whole models in gear analysis[J]. Mechanism and Machine Theory, 1999(34):1227-1235.
[15] 王峰, 方宗德, 李声晋. 斜齿轮动力学建模中啮合刚度处理与对比验证[J]. 振动与冲击, 2014,33(6):13-17.
Feng W, Zongde F, Shengjin L. Treatment and Contrast Verification of Meshing Stiffness in Dynamic Model of Helical Gear[J]. Journal of Vibration and Shock, 2014,33(6):13-17.
[16] FAKHER C, TAHAR F, MOHAMED H. Analytical modelling of spur gear tooth crack and influence on gear mesh stiffness[J]. European Journal of Mechanics A/Solids, 2009,28:461-468
[17] 蔡安江, 张振军, 阮晓光. 基于剃齿修形的啮合角
数值计算 [J]. 中国机械工程. 2013(10):1327-30.
CAI Anjing, ZHANG Zhenjun, RUAN Xiaoguang. Pressure Angle Values Based on Shaving Modification Terms [J].China Mechanical Engineering, 2013,(10):1327-30

PDF(1752 KB)

Accesses

Citation

Detail

段落导航
相关文章

/